cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244647 Decimal expansion of the sum of the reciprocals of the decagonal numbers (A001107).

Original entry on oeis.org

1, 2, 1, 6, 7, 4, 5, 9, 5, 6, 1, 5, 8, 2, 4, 4, 1, 8, 2, 4, 9, 4, 3, 3, 9, 3, 5, 2, 0, 0, 4, 7, 6, 0, 3, 8, 2, 1, 0, 8, 3, 6, 1, 7, 0, 0, 9, 2, 2, 7, 7, 2, 8, 9, 0, 9, 4, 9, 8, 3, 7, 4, 4, 1, 5, 4, 4, 6, 9, 6, 3, 5, 6, 3, 5, 0, 7, 2, 9, 5, 4, 8, 7, 1, 0, 5, 3, 5, 7, 9, 7, 8, 8, 6, 7, 7, 1, 5, 3, 2, 2, 0, 5, 6, 9
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Comments

For the partial sums of the reciprocals of the (positive) decagonal numbers see A250551(n+1)/A294515(n), n >= 0. - Wolfdieter Lang, Nov 07 2017

Examples

			1.216745956158244182494339352004760382108361700922772890949837441544696356350....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Log[2] + Pi/6, 10, 111][[1]] (* or *)
    RealDigits[ Sum[1/(4n^2 - 3n), {n, 1 , Infinity}], 10, 111][[1]]
  • PARI
    log(2)+Pi/6 \\ Charles R Greathouse IV, Feb 08 2023

Formula

Sum_{n>0} 1/(4n^2 - 3n) = log(2) + Pi/6, (A002162 + A019673).