A244651
G.f. A(x) satisfies: Sum_{k=0..n} [x^k] A(x)^n = binomial(6*n,2*n).
Original entry on oeis.org
1, 14, 135, 1148, 9325, 74634, 596083, 4775288, 38447961, 311305350, 2534757855, 20749571316, 170705908421, 1410874891522, 11710273480395, 97573698950384, 815919118022833, 6845174820882174, 57601263531202871, 486057767175907180, 4112073577799441181, 34871360280503319674
Offset: 0
G.f.: A(x) = 1 + 14*x + 135*x^2 + 1148*x^3 + 9325*x^4 + 74634*x^5 +...
ILLUSTRATION OF INITIAL TERMS.
If we form an array of coefficients of x^k in A(x)^n, n>=0, like so:
A^0: [1], 0, 0, 0, 0, 0, 0, ...;
A^1: [1, 14], 135, 1148, 9325, 74634, 596083, ...;
A^2: [1, 28, 466], 6076, 69019, 720328, 7117572, ...;
A^3: [1, 42, 993, 17528], 258462, 3377556, 40526262, ...;
A^4: [1, 56, 1716, 38248, 695450, 10968552, 155816996, ...;
A^5: [1, 70, 2635, 70980, 1536195, 28435134, 467948465, ...;
A^6: [1, 84, 3750, 118468, 2975325, 63276528, 1185303544],...; ...
then we can illustrate how the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals C(6*n,2*n):
C( 0, 0) = 1 = 1;
C( 6, 2) = 1 + 14 = 15;
C(12, 4) = 1 + 28 + 466 = 495;
C(18, 6) = 1 + 42 + 993 + 17528 = 18564;
C(24, 8) = 1 + 56 + 1716 + 38248 + 695450 = 735471;
C(30,10) = 1 + 70 + 2635 + 70980 + 1536195 + 28435134 = 30045015;
C(36,12) = 1 + 84 + 3750 + 118468 + 2975325 + 63276528 + 1185303544 = 1251677700; ...
-
/* By Definition (slow): */
{a(n)=if(n==0, 1, ( binomial(6*n,2*n) - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j/1!)^n + x*O(x^k), k)))/n)}
for(n=0, 20, print1(a(n), ", "))
-
/* Faster, using series reversion: */
{a(n)=local(B=sum(k=0, n+1, binomial(6*k,2*k)*x^k)+x^3*O(x^n), G=1+x*O(x^n));
for(i=1, n, G = 1 + intformal( (B-1)*G/x - B*G^2)); polcoeff(x/serreverse(x*G), n)}
for(n=0, 30, print1(a(n), ", "))
A244652
G.f. A(x) satisfies: Sum_{k=0..n} [x^k] A(x)^n = binomial(6*n,3*n).
Original entry on oeis.org
1, 19, 262, 3322, 41455, 520165, 6602716, 84860884, 1103478733, 14500102087, 192309166018, 2571407785918, 34631087423419, 469382779109305, 6398055968407480, 87653105740545976, 1206315271455768505, 16669999282643795899, 231219555870655381438, 3217973871571202211778
Offset: 0
G.f.: A(x) = 1 + 19*x + 262*x^2 + 3322*x^3 + 41455*x^4 + 520165*x^5 +...
ILLUSTRATION OF INITIAL TERMS.
If we form an array of coefficients of x^k in A(x)^n, n>=0, like so:
A^0: [1], 0, 0, 0, 0, 0, 0, ...;
A^1: [1, 19], 262, 3322, 41455, 520165, 6602716, ...;
A^2: [1, 38, 885], 16600, 277790, 4356348, 65729806, ...;
A^3: [1, 57, 1869, 46693], 992751, 19018983, 339483259, ...;
A^4: [1, 76, 3214, 100460, 2600405], 59206736, 1229790360, ...;
A^5: [1, 95, 4920, 184760, 5645140, 149282604],3549124200, ...;
A^6: [1, 114, 6987, 306452, 10801665, 325750014, 8738270067],...; ...
then we can illustrate how the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals C(6*n,3*n):
C( 0, 0) = 1 = 1;
C( 6, 3) = 1 + 19 = 20;
C(12, 6) = 1 + 38 + 885 = 924;
C(18, 9) = 1 + 57 + 1869 + 46693 = 48620;
C(24,18) = 1 + 76 + 3214 + 100460 + 2600405 = 2704156;
C(30,21) = 1 + 95 + 4920 + 184760 + 5645140 + 149282604 = 155117520;
C(36,24) = 1 + 114 + 6987 + 306452 + 10801665 + 325750014 + 8738270067 = 9075135300; ...
-
/* By Definition (slow): */
{a(n)=if(n==0, 1, ( binomial(6*n,3*n) - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j/1!)^n + x*O(x^k), k)))/n)}
for(n=0, 20, print1(a(n), ", "))
-
/* Faster, using series reversion: */
{a(n)=local(B=sum(k=0, n+1, binomial(6*k,3*k)*x^k)+x^3*O(x^n), G=1+x*O(x^n));
for(i=1, n, G = 1 + intformal( (B-1)*G/x - B*G^2)); polcoeff(x/serreverse(x*G), n)}
for(n=0, 30, print1(a(n), ", "))
A244653
G.f. A(x) satisfies: Sum_{k=0..n} [x^k] A(x)^n = binomial(7*n,2*n).
Original entry on oeis.org
1, 20, 280, 3521, 42945, 521913, 6379233, 78640740, 978172724, 12270946072, 155139813381, 1975245161155, 25308115539770, 326106155857041, 4223481710794292, 54951230993010196, 717942326681863941, 9415448193554916520, 123904268078599269723, 1635676807214777434793
Offset: 0
G.f.: A(x) = 1 + 20*x + 280*x^2 + 3521*x^3 + 42945*x^4 + 521913*x^5 +...
ILLUSTRATION OF INITIAL TERMS.
If we form an array of coefficients of x^k in A(x)^n, n>=0, like so:
A^0: [1], 0, 0, 0, 0, 0, 0, ...;
A^1: [1, 20], 280, 3521, 42945, 521913, 6379233, ...;
A^2: [1, 40, 960], 18242, 305130, 4733386, 70081627, ...;
A^3: [1, 60, 2040, 52163], 1122555, 21563619, 382898782, ...;
A^4: [1, 80, 3520, 113284, 2991220], 68901812, 1437454298, ...;
A^5: [1, 100, 5400, 209605, 6567125, 176797165], 4251203775, ...;
A^6: [1, 120, 7680, 349126, 12666270, 390658878, 10654434813],...; ...
then we can illustrate how the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals C(7*n,2*n):
C( 0, 0) = 1 = 1;
C( 7, 2) = 1 + 20 = 21;
C(14, 4) = 1 + 40 + 960 = 1001;
C(21, 6) = 1 + 60 + 2040 + 52163 = 54264;
C(28, 8) = 1 + 80 + 3520 + 113284 + 2991220 = 3108105;
C(35,10) = 1 + 100 + 5400 + 209605 + 6567125 + 176797165 = 183579396;
C(42,12) = 1 + 120 + 7680 + 349126 + 12666270 + 390658878 + 10654434813 = 11058116888; ...
-
/* By Definition (slow): */
{a(n)=if(n==0, 1, ( binomial(7*n,2*n) - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j/1!)^n + x*O(x^k), k)))/n)}
for(n=0, 20, print1(a(n), ", "))
-
/* Faster, using series reversion: */
{a(n)=local(B=sum(k=0, n+1, binomial(7*k,2*k)*x^k)+x^3*O(x^n), G=1+x*O(x^n));
for(i=1, n, G = 1 + intformal( (B-1)*G/x - B*G^2)); polcoeff(x/serreverse(x*G), n)}
for(n=0, 30, print1(a(n), ", "))
A244654
G.f. A(x) satisfies: Sum_{k=0..n} [x^k] A(x)^n = binomial(7*n,3*n).
Original entry on oeis.org
1, 34, 889, 22344, 568750, 14812084, 394432598, 10708188328, 295488284471, 8266624187654, 233974149056711, 6688412821905136, 192840384283521996, 5601534217892577384, 163776154208030704124, 4816121399286395128048, 142353930553713780303773, 4226997830260963262597162
Offset: 0
G.f.: A(x) = 1 + 34*x + 889*x^2 + 22344*x^3 + 568750*x^4 + 14812084*x^5 +...
ILLUSTRATION OF INITIAL TERMS.
If we form an array of coefficients of x^k in A(x)^n, n>=0, like so:
A^0: [1], 0, 0, 0, 0, 0, ...;
A^1: [1, 34], 889, 22344, 568750, 14812084, ...;
A^2: [1, 68, 2934], 105140, 3447213, 108026800, ...;
A^3: [1, 102, 6135, 287692], 11718441, 437745882, ...;
A^4: [1, 136, 10492, 609304, 29801822], 1301836088, ...;
A^5: [1, 170, 16005, 1109280, 63453080, 3183364624],...; ...
then we can illustrate how the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals C(7*n,3*n):
C( 0, 0) = 1 = 1;
C( 7, 3) = 1 + 34 = 35;
C(14, 6) = 1 + 68 + 2934 = 3003;
C(21, 9) = 1 + 102 + 6135 + 287692 = 293930;
C(28,12) = 1 + 136 + 10492 + 609304 + 29801822 = 30421755;
C(35,15) = 1 + 170 + 16005 + 1109280 + 63453080 + 3183364624 = 3247943160; ...
-
/* By Definition (slow): */
{a(n)=if(n==0, 1, ( binomial(7*n,3*n) - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j/1!)^n + x*O(x^k), k)))/n)}
for(n=0, 20, print1(a(n), ", "))
-
/* Faster, using series reversion: */
{a(n)=local(B=sum(k=0, n+1, binomial(7*k,3*k)*x^k)+x^3*O(x^n), G=1+x*O(x^n));
for(i=1, n, G = 1 + intformal( (B-1)*G/x - B*G^2)); polcoeff(x/serreverse(x*G), n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-4 of 4 results.
Comments