A244656 Least product of consecutive positive integers which is divisible by each of 1, 2, ..., n.
2, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 55440, 55440, 360360, 360360, 360360, 2162160, 85765680, 85765680, 33522128640, 33522128640, 33522128640, 33522128640, 19275223968000, 19275223968000, 19275223968000
Offset: 1
Keywords
Examples
a(7) = 20*21 = 21!/19! = 420 because 420 is divisible by 1, 2, 3, 4, 5, 6, and 7, and no positive integer less than 420 is divisible by each of these. Here, 420 = lcm(1,2,3,4,5,6,7). 420 is an oblong (or promic) number (A002378). a(11) = 7*8*9*10*11 = 11!/6! = 55440. Here, 27720 = lcm(1,2,3,4,5,6,7,8,9,10,11), but 27720 cannot be represented as a product of consecutive positive integers. a(31) = 6081487775*6081487776 = 36984493563555938400, also a promic number.
Links
- Rick L. Shepherd, Table of n, a(n) for n = 1..36
- Rick L. Shepherd, Sample program output and calculation notes
Programs
-
PARI
{a(n) = local(L, M, i, k = 0, s = 0, ret = 0, d, divs2, st, pr, prt = 1); /* Use prt = 0 to suppress printing. */ if(n < 1, return, if(n < 3, ret = 2, L = lcm(vector(n, i, i)); M = n!/L; while(k < M, k++; s += L; d = divisors(s); divs2 = #d \ 2; st = 2; pr = d[st]; i = 0; while(st + i <= divs2, if(d[st + i + 1] == d[st + i] + 1, pr *= d[st + i + 1]; i++; if(pr == s, if(prt, print1("k*L = ", k, "*", L, " = ", s, " = ", d[st], "*"); if(d[st + i] > d[st] + 2, print1("...*"), if(d[st + i] == d[st] + 2, print1(d[st] + 1, "*"))); print(d[st + i], " = ", d[st + i], "!/", d[st] - 1, "!")); ret = s; break(2), if(pr > s, st++; pr = d[st]; i = 0)), if(pr < s, st += i + 1, st++); pr = d[st]; i = 0))))); return(ret)}
Comments