A244665 Decimal expansion of sum_(n>=1) (H(n,3)/n^3) where H(n,3) = A007408(n)/A007409(n) is the n-th harmonic number of order 3.
1, 2, 3, 1, 1, 4, 1, 9, 3, 0, 2, 0, 9, 0, 4, 1, 6, 8, 6, 8, 1, 4, 1, 0, 1, 5, 0, 4, 2, 9, 8, 9, 5, 4, 1, 7, 7, 5, 4, 2, 7, 7, 6, 4, 4, 7, 8, 9, 8, 3, 7, 1, 1, 1, 7, 9, 8, 6, 9, 2, 1, 4, 1, 2, 9, 5, 1, 4, 5, 8, 0, 1, 9, 5, 1, 6, 6, 5, 5, 9, 9, 9, 9, 2, 4, 4, 8, 3, 5, 3, 8, 2, 2, 8, 5, 2, 6, 3, 2, 5, 5, 9, 5
Offset: 1
Examples
1.2311419302090416868141015042989541775427764478983711179869214129514580195...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Philippe Flajolet, Bruno Salvy, Euler Sums and Contour Integral Representations, Experimental Mathematics 7:1 (1998) page 23.
Programs
-
Mathematica
RealDigits[1/2*Zeta[3]^2 + 1/2*Zeta[6], 10, 103] // First
-
PARI
zeta(3)^2/2 + Pi^6/1890 \\ Michel Marcus, Jul 04 2014
Formula
zeta(3)^2/2 + Pi^6/1890.