cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244703 Number of n-node unlabeled rooted trees with thinning limbs and root outdegree (branching factor) 2.

Original entry on oeis.org

1, 1, 3, 4, 9, 13, 26, 42, 81, 138, 262, 467, 885, 1620, 3076, 5743, 10953, 20721, 39714, 75873, 146139, 281259, 544230, 1053552, 2047147, 3981790, 7766018, 15165195, 29676887, 58148087, 114129308, 224278526, 441368913, 869583189, 1715365690, 3387344619
Offset: 3

Views

Author

Alois P. Heinz, Jul 04 2014

Keywords

Comments

In a rooted tree with thinning limbs the outdegree of a parent node is larger than or equal to the outdegree of any of its child nodes.

Examples

			a(6) = 4:
    o        o      o        o
   / \      / \    / \      / \
  o   o    o   o  o   o    o   o
  |       / \     |   |   / \  |
  o      o   o    o   o  o   o o
  |      |        |
  o      o        o
  |
  o
		

Crossrefs

Column k=2 of A244657.

Programs

  • Maple
    b:= proc(n, i, h, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n b(n-1$2, 2$2):
    seq(a(n), n=3..50);
  • Mathematica
    b[n_, i_, h_, v_] := b[n, i, h, v] = If[n == 0, If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0, If[n == v, 1, Sum[Binomial[A[i, Min[i - 1, h]] + j - 1, j]*b[n - i*j, i - 1, h, v - j], {j, 0, Min[n/i, v]}]]]];
    A[n_, k_] := A[n, k] = If[n<2, n, Sum[b[n-1, n-1, j, j], {j, 1, Min[k, n-1] }]];
    a[n_] := b[n-1, n-1, 2, 2];
    a /@ Range[3, 50] (* Jean-François Alcover, Dec 27 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 2.0554620926822709065075792..., c = 1.0209036918758320315742... . - Vaclav Kotesovec, Aug 27 2014