A244714 Number of compositions of n with exactly 2 transitions between different parts.
1, 4, 14, 29, 56, 100, 148, 230, 322, 446, 573, 778, 953, 1215, 1456, 1806, 2134, 2542, 2944, 3477, 3968, 4600, 5186, 5872, 6657, 7446, 8304, 9217, 10258, 11172, 12465, 13564, 14867, 16072, 17716, 18816, 20832, 22055, 24144, 25504, 27904, 29168, 32051, 33375
Offset: 4
Keywords
Examples
a(4) = 1: [1,2,1]. a(5) = 4: [1,1,2,1], [1,2,1,1], [1,3,1], [2,1,2].
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
Crossrefs
Column k=2 of A238279.
Programs
-
Maple
b:= proc(n, v) option remember; `if`(n=0, [1, 0$2], add(`if`(v in [0, i], b(n-i, `if`(i<=n-i, i, -1)), [0, b(n-i, `if`(i<=n-i, i, -1))[1..2][]]), i=1..n)) end: a:= n-> b(n, 0)[3]: seq(a(n), n=4..60);
-
Mathematica
b[n_, v_] := b[n, v] = If[n == 0, 1, Expand[Sum[b[n - i, i]* If[v == 0 || v == i, 1, x], {i, n}]]]; a[n_] := Coefficient[b[n, 0], x, 2]; Table[a[n], {n, 4, 60}] (* Jean-François Alcover, Aug 29 2021, after A238279 Maple code *)