A244715 Number of compositions of n with exactly 3 transitions between different parts.
2, 10, 36, 86, 200, 374, 680, 1122, 1796, 2694, 3954, 5600, 7752, 10448, 13798, 18072, 23032, 29218, 36390, 45044, 54870, 66852, 79790, 95550, 112662, 132938, 154752, 180614, 207764, 239784, 273898, 312922, 354240, 401826, 451598, 508134, 567756, 634634, 705506
Offset: 6
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..900
Crossrefs
Column k=3 of A238279.
Programs
-
Maple
b:= proc(n, v) option remember; `if`(n=0, [1, 0$3], add(`if`(v in [0, i], b(n-i, `if`(i<=n-i, i, -1)), [0, b(n-i, `if`(i<=n-i, i, -1))[1..3][]]), i=1..n)) end: a:= n-> b(n, 0)[4]: seq(a(n), n=6..60);
-
Mathematica
b[n_, v_] := b[n, v] = If[n == 0, 1, Expand[Sum[b[n - i, i]* If[v == 0 || v == i, 1, x], {i, n}]]]; a[n_] := Coefficient[b[n, 0], x, 3]; Table[a[n], {n, 6, 60}] (* Jean-François Alcover, Aug 29 2021, after A238279 Maple code *)