A244716 Number of compositions of n with exactly 4 transitions between different parts.
1, 6, 31, 99, 278, 654, 1390, 2714, 4927, 8531, 13963, 22134, 33767, 50283, 72470, 102891, 142375, 194202, 260093, 343973, 447906, 577636, 735540, 928009, 1159312, 1436145, 1765079, 2152787, 2608321, 3137866, 3755214, 4464420, 5284570, 6216275, 7287298, 8494233
Offset: 7
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..900
Crossrefs
Column k=4 of A238279.
Programs
-
Maple
b:= proc(n, v) option remember; `if`(n=0, [1, 0$4], add(`if`(v in [0, i], b(n-i, `if`(i<=n-i, i, -1)), [0, b(n-i, `if`(i<=n-i, i, -1))[1..4][]]), i=1..n)) end: a:= n-> b(n, 0)[5]: seq(a(n), n=7..60);
-
Mathematica
b[n_, v_] := b[n, v] = If[n == 0, 1, Expand[Sum[b[n - i, i]* If[v == 0 || v == i, 1, x], {i, n}]]]; a[n_] := Coefficient[b[n, 0], x, 4]; Table[a[n], {n, 7, 60}] (* Jean-François Alcover, Aug 29 2021, after A238279 Maple code *)