cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244740 Irregular triangular array read by rows: T(n,k) = number of positive integers m such that (prime(n) mod m) = k, for k=1..(-1 + prime(k))/2.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 3, 2, 2, 1, 1, 5, 1, 2, 1, 1, 1, 4, 3, 2, 1, 2, 1, 1, 1, 5, 1, 3, 2, 2, 1, 1, 1, 1, 3, 3, 4, 1, 3, 1, 2, 1, 1, 1, 1, 5, 3, 2, 2, 4, 1, 2, 1, 2, 1, 1, 1, 1, 1, 7, 1, 4, 2, 2, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 8, 3, 2, 2, 3, 1, 3, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Jul 06 2014

Keywords

Comments

(sum of numbers in row n) = prime(n+1)-2; (column 1) = A244796; (column 2) = A244797; (column 3) = A244798.

Examples

			First 12 rows:
1
2 1
3 1 1
3 2 2 1 1
5 1 2 1 1 1
4 3 2 1 2 1 1 1
5 1 3 2 2 1 1 1 1
3 3 4 1 3 1 2 1 1 1
5 3 2 2 4 1 2 1 2 1 1 1 1 1
7 1 4 2 2 1 3 1 2 1 1 1 1 1 1
8 3 2 2 3 1 3 1 2 1 2 1 1 1 1 1 1 1
7 3 2 1 5 2 2 2 2 1 2 1 2 1 1 1 1 1 1 1
For row 4, count these congruences:
11 = (1 mod m) for m = 2, 5, 10;
11 = (2 mod m) for m = 3, 9;
11 = (3 mod m) for m = 4, 8;
11 = (4 mod m) for m = 7;
11 = (5 mod m) for m = 6, so that (row 4) = (3,2,2,1,1).
		

Crossrefs

Programs

  • Mathematica
    z = 60; f[n_, m_, k_] := f[n, m, k] = If[Mod[Prime[n], m] == k, 1, 0];
    t[k_] := t[k] = Table[f[n, m, k], {n, 1, z}, {m, 1, -1 + Prime[n]}];
    u = Table[Count[t[k][[i]], 1], {k, 1, 40}, {i, 1, z}];
    v = Table[u[[n, k]], {k, 2, 20}, {n, 1, (-1 + Prime[k])/2}]
    Flatten[v] (* A244740 *)