A244749 0-additive sequence: a(n) is the smallest number larger than a(n-1) that is not the sum of any subset of earlier terms, starting with initial values {2, 5}.
2, 5, 6, 9, 10, 28, 29, 85, 86, 256, 257, 769, 770, 2308, 2309, 6925, 6926, 20776, 20777, 62329, 62330, 186988, 186989, 560965, 560966, 1682896, 1682897, 5048689, 5048690, 15146068, 15146069, 45438205, 45438206, 136314616, 136314617, 408943849, 408943850, 1226831548, 1226831549
Offset: 1
Examples
The numbers 11-27 are not in the sequence since some combination of the previous terms add to it. example 17=2+5+10. The number 28 however is a term since no combination of the previous terms cannot be found which sum to 28.
References
- R. K. Guy, "s-Additive sequences," preprint, 1994.
Links
- Steven R. Finch, Are 0-additive sequences always regular?, Amer. Math. Monthly, 99 (1992), 671-673.
- Index entries for linear recurrences with constant coefficients, signature (-1,3,3).
Crossrefs
Programs
-
Mathematica
f[s_List] := f[n] = Block[{k = s[[-1]] + 1, ss = Union[ Plus @@@ Subsets[s]]}, While[ MemberQ[ss, k], k++]; Append[s, k]]; Nest[ f[#] &, {2, 5}, 20] (* or *) b = LinearRecurrence[{4, -3}, {9, 28}, 18]; Join[{2, 5, 6}, Riffle[b, b + 1]] Join[{2, 5, 6},LinearRecurrence[{-1, 3, 3},{9, 10, 28},36]] (* Ray Chandler, Aug 03 2015 *)
-
PARI
Vec(x*(7*x^5+14*x^4+6*x^3-5*x^2-7*x-2)/((x+1)*(3*x^2-1)) + O(x^100)) \\ Colin Barker, Jul 11 2014
Formula
a(2n) = 4a(2n - 2) - 3a(2n - 4) and a(2n +1) = a(2n) +1, for n>2.
a(n) = -a(n-1) + 3*a(n-2) + 3*a(n-3) for n>6. - Colin Barker, Jul 11 2014
G.f.: x*(7*x^5+14*x^4+6*x^3-5*x^2-7*x-2) / ((x+1)*(3*x^2-1)). - Colin Barker, Jul 11 2014
Comments