A244779 Positive numbers primitively represented by the binary quadratic form (1, 1, 2).
1, 2, 4, 7, 8, 11, 14, 16, 22, 23, 28, 29, 32, 37, 43, 44, 46, 53, 56, 58, 64, 67, 71, 74, 77, 79, 86, 88, 92, 106, 107, 109, 112, 113, 116, 121, 127, 128, 134, 137, 142, 148, 149, 151, 154, 158, 161, 163, 172, 176, 179, 184, 191, 193, 197, 203, 211, 212, 214
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Maple
PriRepBQF := proc(a, b, c, n) local L,q,R,r,k; q := a*x^2 + b*x*y + c*y^2; L := NULL; for k from 1 to n do R := [isolve(q = k)]; if R = [] then next fi; for r in R do igcd(op(2,r[1]), op(2,r[2])); if 1 = % then L := L,k; break fi od od; L end: A244779_list := n -> PriRepBQF(1, 1, 2, n); A244779_list(214); # Alternate program A244779_set:= proc(N) local A, B, y,x; A:= {}; for y from 0 to floor(sqrt(4*N/7)) do for x from ceil(-y/2) to floor(-y/2 + sqrt(N - 7/4*y^2)) do if igcd(x,y) = 1 then A:= A union {x^2 + x*y + 2*y^2} fi od od; A end proc: A244779_set(1000); # Robert Israel, Jul 06 2014
-
Mathematica
Reap[For[n = 1, n < 1000, n++, r = Reduce[x^2 + x y + 2 y^2 == n, {x, y}, Integers]; If[r =!= False, If[AnyTrue[{x, y} /. {ToRules[r /. C[1] -> 0]}, CoprimeQ @@ # &], Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2016 *)
Comments