A244819 Positive numbers primitively represented by the binary quadratic form (1, 0, 3).
1, 3, 4, 7, 12, 13, 19, 21, 28, 31, 37, 39, 43, 49, 52, 57, 61, 67, 73, 76, 79, 84, 91, 93, 97, 103, 109, 111, 124, 127, 129, 133, 139, 147, 148, 151, 156, 157, 163, 169, 172, 181, 183, 193, 196, 199, 201, 211, 217, 219, 223, 228, 229, 237, 241, 244, 247, 259
Offset: 1
Keywords
Examples
Proper solution to x^2 + 3*y^2 = a(n), with x nonnegative: a(12 = 3*4) with (x, y) = (3, pm 1), pm = +1 or -1, multiplicity m(12) = 2, (a, b, P1) = (1, 1, 0); a(21 = 3*7) with (3, pm 2), m(21) = 2, (a, b, P1) = (1, 0, 1); a(49 = 7^2) with (1, pm 4), m(49) = 2 (a, b, P1) = (0, 0, 1)). - _Wolfdieter Lang_, Mar 02 2021
References
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976 (1986), Theorem 5.30, pp. 121-122.
Links
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Maple
# Function PriRepBQF in A244779. A244819 list := n -> PriRepBQF(1, 0, 3, n); A244819_list(259);
-
Mathematica
Reap[For[n = 1, n < 1000, n++, r = Reduce[x^2 + 3 y^2 == n, {x, y}, Integers]; If[r =!= False, If[AnyTrue[{x, y} /. {ToRules[r /. C[1] -> 0]}, CoprimeQ @@ # &], Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2016 *)
Comments