cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244843 Decimal expansion of the integral of log(2+x^2+y^2)/((1+x^2)*(1+y^2)) dx dy over the square [0,1]x[0,1].

Original entry on oeis.org

5, 6, 9, 5, 9, 6, 1, 5, 8, 1, 8, 3, 6, 1, 4, 5, 0, 6, 2, 3, 6, 4, 5, 5, 5, 3, 6, 7, 2, 7, 1, 7, 4, 6, 9, 0, 1, 0, 7, 8, 7, 6, 1, 2, 6, 8, 2, 1, 2, 2, 8, 7, 8, 3, 6, 8, 2, 8, 1, 8, 4, 0, 8, 1, 2, 4, 8, 5, 2, 3, 0, 0, 2, 5, 0, 2, 9, 9, 1, 8, 1, 1, 6, 1, 4, 0, 5, 6, 5, 7, 4, 2, 2, 2, 7, 2, 4, 5, 8, 6, 8
Offset: 0

Views

Author

Jean-François Alcover, Jul 07 2014

Keywords

Comments

The computation of this integral is given by Bailey & Borwein as an example of the use of CAS packages (and additional tools) to simplify large symbolic expressions.

Examples

			0.56959615818361450623645553672717469010787612682122878368281840812485230025...
		

Crossrefs

Cf. A261027 (Cl_2(Pi/6)), A261028 (Cl_2(5*Pi/6)).

Programs

  • Mathematica
    Clausen2[x_] := Im[PolyLog[2, Exp[x*I]]]; Pi^2/8*Log[2] - 7/48*Zeta[3] + 11/24*Pi*Clausen2[Pi/6] - 29/24*Pi*Clausen2[5*Pi/6] // RealDigits[#, 10, 101]& // First
  • PARI
    Cl2(x)=imag(polylog(2,exp(x*I)));
    Pi^2/8*log(2) - 7/48*zeta(3) + 11/24*Pi*Cl2(Pi/6) - 29/24*Pi*Cl2(5*Pi/6) \\ Charles R Greathouse IV, Aug 27 2014

Formula

Pi^2/8*log(2) - 7/48*zeta(3) + 11/24*Pi*Cl2(Pi/6) - 29/24*Pi*Cl2(5*Pi/6), where Cl2 is the Clausen function Cl2(t) = Sum_{n>0} sin(n*t)/n^2.