cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244860 Number of Fibonacci numbers in generation n of the tree at A232559.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 2, 0, 0, 2, 0, 1, 1, 1, 2, 1, 0, 0, 3, 2, 0, 1, 1, 0, 0, 1, 1, 0, 4, 1, 0, 1, 0, 0, 1, 4, 2, 0, 1, 0, 1, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 1, 1, 1, 2, 1, 0, 2, 3, 0, 1, 0, 0, 1, 0, 3, 0, 1, 0, 1, 1, 2
Offset: 1

Views

Author

Clark Kimberling, Jul 07 2014

Keywords

Comments

Generation n consists of F(n) = A000045(n) distinct Fibonacci numbers. Is {a(n)} bounded above?

Examples

			In the table below, g(n) denotes generation n of the tree at A232559.
n ... g(n) ............ a(n)
1 ... {1} ............. 1
2 ... {2} ............. 1
3 ... {3,4} ........... 1
4 ... {5,6,8} ......... 2
5 ... {7,9,10,12,16} .. 0
		

Crossrefs

Programs

  • Mathematica
    z = 32; g[1] = {1}; f1[x_] := f1[x] = x + 1; f2[x_] := f2[x] = 2 x; h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]]; h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]; f = Table[Fibonacci[n], {n, 1, 90}]; Table[Length[Intersection[g[n], f]], {n, 1, z}]
  • PARI
    \\ See Links section.

Extensions

More terms from Rémy Sigrist, Feb 13 2023