A244860 Number of Fibonacci numbers in generation n of the tree at A232559.
1, 1, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 2, 0, 0, 2, 0, 1, 1, 1, 2, 1, 0, 0, 3, 2, 0, 1, 1, 0, 0, 1, 1, 0, 4, 1, 0, 1, 0, 0, 1, 4, 2, 0, 1, 0, 1, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 1, 1, 1, 2, 1, 0, 2, 3, 0, 1, 0, 0, 1, 0, 3, 0, 1, 0, 1, 1, 2
Offset: 1
Keywords
Examples
In the table below, g(n) denotes generation n of the tree at A232559. n ... g(n) ............ a(n) 1 ... {1} ............. 1 2 ... {2} ............. 1 3 ... {3,4} ........... 1 4 ... {5,6,8} ......... 2 5 ... {7,9,10,12,16} .. 0
Links
- Rémy Sigrist, PARI program
Programs
-
Mathematica
z = 32; g[1] = {1}; f1[x_] := f1[x] = x + 1; f2[x_] := f2[x] = 2 x; h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]]; h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]; f = Table[Fibonacci[n], {n, 1, 90}]; Table[Length[Intersection[g[n], f]], {n, 1, z}]
-
PARI
\\ See Links section.
Extensions
More terms from Rémy Sigrist, Feb 13 2023
Comments