A244862 List of pairs of prime numbers (p,q) starting with (2, 3) such that p || q (where || denotes concatenation) is a prime number and the sequence is always extended with the smallest prime not yet present in the sequence.
2, 3, 5, 23, 7, 19, 11, 17, 13, 61, 29, 53, 31, 37, 41, 59, 43, 73, 47, 83, 67, 79, 71, 167, 89, 101, 97, 103, 107, 137, 109, 139, 113, 131, 127, 157, 149, 173, 151, 163, 179, 233, 181, 193, 191, 227, 197, 257, 199, 211, 223, 229, 239, 251, 241, 271, 263, 269, 277, 331, 281, 317, 283, 397, 293, 311, 307, 337, 313, 373, 347, 359, 349, 379, 353
Offset: 1
Examples
The first few pairs are (2,3),(5,23),(7,19),(11,17),(13,61),(29,53), ..., giving the primes 23, 523, 719, 1117, 1361, 2953, ...
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory):nn:=60:lst:={2,3}: printf ( "%d %d \n",2,3): for a from 2 to nn do: p:=ithprime(a):ii:=0: for b from 1 to nn while(ii=0)do: q:=ithprime(b):s:=p*10^(length(q))+q: if type(s,prime)=true and lst intersect {p,q}={} then lst:=lst union {p,q}:ii:=1:printf(`%d, `,p):printf(`%d, `,q): else fi: od: od: [I have been informed that this program may be incorrect. - N. J. A. Sloane, Jul 03 2024] # alternative version P:=proc(q) local a,b,k,i,j,n,ok; a:=[2,3]; for n from 1 to q do k:=3; ok:=1; for i do if ok=1 then k:=nextprime(k); if numboccur(k,a)=0 then b:=k; for j from k do k:=nextprime(k); if numboccur(k,a)=0 then if isprime(b*10^length(k)+k) then a:=[op(a),b,k]; ok:=0; break; fi; fi; od; fi; else break;fi; od; od; print(op(a)); end: P(500); # Paolo P. Lava, Jul 03 2024
Extensions
Edited by N. J. A. Sloane, Jul 03 2024. More than the usual number of terms are shown in order to distinguish this from A373794.