cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244867 Let G denote the 9-node, 16-edge graph formed from an octagon with main diagonals drawn and a node at the center; a(n) = number of magic labelings of G with magic sum 2n.

Original entry on oeis.org

1, 32, 320, 1784, 7040, 22104, 58980, 139320, 299343, 596200, 1115972, 1983488, 3374150, 5527952, 8765880, 13508880, 20299581, 29826960, 42954136, 60749480, 84521228, 115855784, 156659900, 209206920, 276187275, 360763416, 466629372, 598075120, 760055954, 958267040, 1199223344, 1490345120
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2014

Keywords

Programs

  • Mathematica
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,32,320,1784,7040,22104,58980,139320},40] (* Harvey P. Dale, Aug 17 2019 *)
  • PARI
    Vec((1 + 24*x + 92*x^2 + 64*x^3 + 6*x^4) / (1 - x)^8 + O(x^40)) \\ Colin Barker, Jan 11 2017

Formula

G.f.: (1 + 24*x + 92*x^2 + 64*x^3 + 6*x^4) / (1 - x)^8.
From Colin Barker, Jan 11 2017: (Start)
a(n) = (5040 + 22164*n + 43092*n^2 + 46963*n^3 + 30240*n^4 + 11326*n^5 + 2268*n^6 + 187*n^7) / 5040.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>7.
(End)