A244880 Number of magic labelings of the cycle-of-loops graph LOOP X C_8 having magic sum n, where LOOP is the 1-vertex, 1-loop-edge graph.
1, 47, 650, 4726, 23219, 87677, 274132, 743724, 1806597, 4016683, 8306078, 16168802, 29904823, 52936313, 90209192, 148694104, 238002057, 371131047, 565361074, 843316046, 1234212155, 1775313397, 2513615996, 3507784580, 4830364045, 6570292131, 8835738822, 11757299770, 15491572031
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
Maple
A244880:=n->(630 + 3051*n + 6570*n^2 + 8211*n^3 + 6503*n^4 + 3339*n^5 + 1085*n^6 + 204*n^7 + 17*n^8) / 630: seq(A244880(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
-
Mathematica
CoefficientList[Series[(1 + 38 (x + x^5) + 263 (x^2 + x^4) + 484 x^3 + x^6)/(1 - x)^9, {x, 0, 28}], x] (* Michael De Vlieger, Sep 15 2017 *)
-
PARI
Vec((1 + 6*x + x^2)*(1 + 32*x + 70*x^2 + 32*x^3 + x^4) / (1 - x)^9 + O(x^30)) \\ Colin Barker, Jan 12 2017
Formula
G.f.: (1+38*(x+x^5)+263*(x^2+x^4)+484*x^3+x^6) / (1-x)^9.
From Colin Barker, Jan 12 2017: (Start)
a(n) = (630 + 3051*n + 6570*n^2 + 8211*n^3 + 6503*n^4 + 3339*n^5 + 1085*n^6 + 204*n^7 + 17*n^8) / 630.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.
(End)
(326*n^2-195*n+142)*a(n) +(-652*n^2-652*n-10725)*a(n-1) +(326*n^2+847*n+663)*a(n-2) +2*(-165*n^2-165*n-71)=0. - R. J. Mathar, Mar 10 2025
Extensions
Name corrected by David J. Seal, Sep 13 2017