A244915 Smallest positive integer a(n) such that b(n) = a(n)^2 + a(n-1)^2 is a prime different from the primes b(1), b(2), ..., b(n-1), where a(0) = 1.
1, 1, 2, 3, 8, 5, 2, 7, 8, 13, 2, 15, 4, 1, 6, 5, 4, 9, 10, 1, 14, 9, 16, 1, 20, 3, 10, 7, 12, 13, 10, 17, 2, 27, 10, 19, 6, 11, 4, 21, 10, 29, 4, 25, 6, 29, 16, 5, 18, 7, 20, 11, 14, 15, 22, 5, 24, 1, 26, 5, 28, 13, 20, 19, 14, 25, 12, 17, 8, 23, 12, 43, 8
Offset: 0
Keywords
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A100208.
Programs
-
PARI
a244915(maxn) = { my(a=[1], b=[], an, bn); for(n=1, maxn, an=1; while(!(isprime(bn=an^2+a[#a]^2) && setsearch(b, bn)==0), an++); a=concat(a, an); b=setunion(b, [bn]) ); a } a244915(100) \\ Colin Barker, Aug 24 2014
-
Python
from sympy import isprime A244915 = [1] blist = [] for n in range(1, 100): a, b = 1, 1 + A244915[-1]**2 while not isprime(b) or b in blist: b += 2*a+1 a += 1 blist.append(b) A244915.append(a) # Chai Wah Wu, Aug 28 2014
Extensions
More terms from Colin Barker, Aug 24 2014
Comments