A244921 Decimal expansion of (sqrt(2)+log(1+sqrt(2)))/3, the integral over the square [0,1]x[0,1] of sqrt(x^2+y^2) dx dy.
7, 6, 5, 1, 9, 5, 7, 1, 6, 4, 6, 4, 2, 1, 2, 6, 9, 1, 3, 4, 4, 7, 6, 6, 0, 1, 6, 3, 9, 6, 4, 9, 6, 7, 9, 5, 8, 6, 5, 9, 4, 4, 0, 6, 7, 8, 7, 9, 5, 2, 7, 8, 2, 7, 9, 7, 6, 6, 5, 8, 4, 4, 8, 8, 8, 1, 3, 6, 9, 8, 8, 7, 5, 6, 1, 3, 7, 7, 7, 0, 8, 8, 9, 4, 6, 9, 8, 1, 4, 2, 0, 7, 9, 2, 9, 9, 2, 0, 5, 1, 9, 7, 2, 5
Offset: 0
Examples
0.76519571646421269134476601639649679586594406787952782797665844888136988756...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- D. Bailey, J. Borwein, and R. Crandall, Advances in the theory of box integrals, Mathematics of Computation, Vol. 79, No. 271 (2010), pp. 1839-1866. See p. 1860.
- Philip W. Kuchel and Rodney J. Vaughan, Average lengths of chords in a square, Mathematics Magazine, Vol. 54, No. 5 (1981), pp. 261-269.
- Index entries for transcendental numbers
Crossrefs
Cf. A244920.
Programs
-
Mathematica
RealDigits[(Sqrt[2] + Log[1 + Sqrt[2]])/3, 10, 104] // First
-
PARI
(sqrt(2)+log(1+sqrt(2)))/3 \\ G. C. Greubel, Jul 05 2017
Comments