A244977 Decimal expansion of Pi/(12*sqrt(3)).
1, 5, 1, 1, 4, 9, 9, 4, 7, 0, 1, 9, 5, 1, 8, 1, 5, 4, 2, 1, 6, 1, 7, 3, 1, 8, 8, 1, 3, 6, 8, 4, 6, 3, 1, 1, 0, 2, 3, 6, 7, 2, 1, 8, 7, 3, 4, 1, 0, 6, 1, 7, 1, 4, 6, 3, 0, 8, 2, 3, 7, 4, 4, 6, 1, 5, 6, 7, 6, 9, 3, 1, 7, 6, 0, 5, 2, 9, 4, 9, 0, 3, 0, 7, 0, 1, 0, 4, 1, 5, 6, 8, 4, 3, 3, 8, 3, 4, 7, 4, 0, 4, 6, 8, 5
Offset: 0
Examples
0.15114994701951815421617318813684631102367218734106171463082374461567693176...
References
- George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Beta Function.
- Index entries for transcendental numbers
Crossrefs
Cf. A244976.
Programs
-
Mathematica
RealDigits[Pi/(12*Sqrt[3]), 10, 105] // First
-
PARI
Pi/sqrt(432) \\ Charles R Greathouse IV, Sep 28 2022
Formula
Equals Integral_{x=0..1} (x^2*(1 + x^2))/(1 + x^2 + x^4)^2 dx.
Equals beta(3/2, 1/2)/(6*sqrt(3)), where 'beta' is Euler's beta function.
Equals Integral_{x>=0} 1/(x^2 + 3)^2 dx. - Amiram Eldar, Nov 16 2021