cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244977 Decimal expansion of Pi/(12*sqrt(3)).

Original entry on oeis.org

1, 5, 1, 1, 4, 9, 9, 4, 7, 0, 1, 9, 5, 1, 8, 1, 5, 4, 2, 1, 6, 1, 7, 3, 1, 8, 8, 1, 3, 6, 8, 4, 6, 3, 1, 1, 0, 2, 3, 6, 7, 2, 1, 8, 7, 3, 4, 1, 0, 6, 1, 7, 1, 4, 6, 3, 0, 8, 2, 3, 7, 4, 4, 6, 1, 5, 6, 7, 6, 9, 3, 1, 7, 6, 0, 5, 2, 9, 4, 9, 0, 3, 0, 7, 0, 1, 0, 4, 1, 5, 6, 8, 4, 3, 3, 8, 3, 4, 7, 4, 0, 4, 6, 8, 5
Offset: 0

Views

Author

Jean-François Alcover, Jul 09 2014

Keywords

Examples

			0.15114994701951815421617318813684631102367218734106171463082374461567693176...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.

Crossrefs

Cf. A244976.

Programs

  • Mathematica
    RealDigits[Pi/(12*Sqrt[3]), 10, 105] // First
  • PARI
    Pi/sqrt(432) \\ Charles R Greathouse IV, Sep 28 2022

Formula

Equals Integral_{x=0..1} (x^2*(1 + x^2))/(1 + x^2 + x^4)^2 dx.
Equals beta(3/2, 1/2)/(6*sqrt(3)), where 'beta' is Euler's beta function.
Equals Integral_{x>=0} 1/(x^2 + 3)^2 dx. - Amiram Eldar, Nov 16 2021