cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A244978 Decimal expansion of Pi/32.

Original entry on oeis.org

0, 9, 8, 1, 7, 4, 7, 7, 0, 4, 2, 4, 6, 8, 1, 0, 3, 8, 7, 0, 1, 9, 5, 7, 6, 0, 5, 7, 2, 7, 4, 8, 4, 4, 6, 5, 1, 3, 1, 1, 6, 1, 5, 4, 3, 7, 3, 0, 4, 7, 2, 0, 5, 6, 9, 0, 5, 4, 6, 7, 0, 1, 8, 5, 0, 9, 6, 1, 9, 2, 6, 2, 6, 9, 6, 4, 4, 4, 0, 3, 1, 2, 0, 7, 1, 2, 6, 0, 8, 8, 2, 9, 1, 9, 4, 1, 1, 5, 8, 3, 7, 4, 4, 4, 2, 1
Offset: 0

Views

Author

Jean-François Alcover, Jul 09 2014

Keywords

Examples

			0.0981747704246810387019576057274844651311615437304720569054670185096...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.

Crossrefs

Programs

Formula

Equals Integral_{x = 0..1} x^2/(1 + x^2)^3 dx.
Also equals beta(3/2, 1/2)/16, where 'beta' is Euler's beta function.
From Peter Bala, Oct 27 2019: (Start)
Equals Integral_{x = 0..1} x^4*sqrt(1 - x^2) dx = Integral_{x = 0..1} x^5*sqrt(1 - x^4) dx = Integral_{x = 0..1} x^7*sqrt(1 - x^16) dx.
Equals Integral_{x >= 0} x^4/(1 + x^2)^4 dx. (End)
From Amiram Eldar, Jul 13 2020: (Start)
Equals Integral_{x=0..oo} dx/(x^2 + 4)^2.
Equals Sum_{k>=1} sin(k)^3*cos(k)^3/k. (End)
From Peter Bala, Dec 08 2021: (Start)
Pi/32 = Sum_{n >= 1} (-1)^n*n^2/((4*n^2 - 1)*(4*n^2 - 9)).
Applying Euler's series transformation to this alternating sum gives
Pi/32 = Sum_{n >= 1} 2^(n-3)*n*(n+1)/((2*n+3)*binomial(2*n+2, n+1)). (End)

A022778 Place where n-th 1 occurs in A023116.

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 16, 21, 26, 32, 38, 45, 52, 60, 69, 78, 88, 98, 109, 120, 132, 145, 158, 172, 186, 201, 217, 233, 250, 267, 285, 303, 322, 342, 362, 383, 404, 426, 448, 471, 495, 519, 544, 569, 595, 621, 648, 676, 704, 733, 762, 792, 823, 854
Offset: 1

Views

Author

Keywords

Comments

Also place where first n appears in A007337. - Franklin T. Adams-Watters, Nov 10 2006

Crossrefs

Programs

  • Mathematica
    Table[n + 1 + Sum[Floor[(n - k)/Sqrt[3]], {k, 0, n}], {n, 0, 200}] (* A022778 *)
    (* Clark Kimberling, Mar 14 2015 *)

Formula

a(n) = n + 1 + Sum{floor[(n - k)/sqrt(3)], k = 0..n}.

A244979 Decimal expansion of Pi/(2*sqrt(5)).

Original entry on oeis.org

7, 0, 2, 4, 8, 1, 4, 7, 3, 1, 0, 4, 0, 7, 2, 6, 3, 9, 3, 1, 5, 6, 3, 7, 4, 6, 4, 3, 2, 0, 4, 8, 9, 4, 7, 9, 9, 4, 6, 6, 5, 0, 9, 1, 8, 7, 0, 6, 7, 2, 0, 2, 4, 1, 9, 9, 8, 9, 7, 2, 1, 0, 2, 6, 1, 9, 2, 1, 4, 1, 8, 8, 0, 6, 1, 9, 1, 8, 8, 2, 0, 5, 1, 0, 4, 1, 4, 2, 4, 1, 5, 3, 6, 5, 7, 6, 7, 2, 4, 0, 2, 1, 5, 0, 7
Offset: 0

Views

Author

Jean-François Alcover, Jul 09 2014

Keywords

Examples

			0.702481473104072639315637464320489479946650918706720241998972102619214188...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi/(2*Sqrt[5]), 10, 105] // First
  • PARI
    Pi/sqrt(20) \\ Charles R Greathouse IV, Sep 30 2022

Formula

Equals Integral_(0..1) (1 + x^2)/(1 + 3*x^2 + x^4) dx.
From Peter Bala, Feb 16 2015: (Start)
Also equals beta(1/2, 1/2)/(2*sqrt(5)), where 'beta' is Euler's beta function.
Pi/(2*sqrt(5)) = Integral_{t = 0..a} (1 + t^2)*(1 + t^6)/(1 + t^10) dt = a + a^3/3 + a^7/7 + a^9/9 - a^11/11 - a^13/13 - a^17/17 - a^19/19 + ..., where a = 1/2(sqrt(5) - 1). Hint: differentiate atan( sqrt(5)*(t - t^3)/(1 - 3*t^2 + t^4) ). (End)
Equals (1/2)*Sum_{n >= 0} (-1)^n*( 1/(10*n + 1) + 1/(10*n + 3) + 1/(10*n + 7) + 1/(10*n + 9) ). Cf. A019692. - Peter Bala, Oct 30 2019
From Amiram Eldar, Aug 06 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 5) dx.
Equals 0.1 * Integral_{x=0..oo} log(1 + 5/x^2) dx. (End)
Equals Integral_{x = 0..1} 2/(4*x^2 + 5*(1 - x)^2) dx. - Peter Bala, Jul 22 2022

A244980 Decimal expansion of Pi/(2*sqrt(6)).

Original entry on oeis.org

6, 4, 1, 2, 7, 4, 9, 1, 5, 0, 8, 0, 9, 3, 2, 0, 4, 7, 7, 7, 2, 0, 1, 8, 1, 7, 9, 8, 3, 5, 5, 0, 3, 2, 0, 5, 7, 3, 3, 6, 3, 0, 3, 3, 3, 7, 8, 2, 0, 4, 6, 1, 6, 1, 5, 5, 0, 6, 9, 4, 8, 0, 3, 3, 7, 8, 1, 9, 9, 4, 1, 1, 7, 5, 6, 5, 1, 1, 0, 5, 0, 5, 1, 6, 6, 4, 3, 4, 5, 9, 5, 2, 6, 1, 9, 7, 2, 2, 0, 3, 7, 2, 5, 7, 9, 7
Offset: 0

Views

Author

Jean-François Alcover, Jul 09 2014

Keywords

Examples

			0.6412749150809320477720181798355032057336303337820461615506948033781994...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi/(2*Sqrt[6]), 10, 106] // First
  • PARI
    Pi/sqrt(24) \\ Charles R Greathouse IV, Oct 01 2022

Formula

Equals Integral_{x=0..1} (1 + x^2)/(1 + 4*x^2 + x^4) dx.
Equals beta(1/2, 1/2)/(2*sqrt(6)), where 'beta' is Euler's beta function.
From Amiram Eldar, Aug 15 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 6) dx.
Equals Integral_{x=0..oo} 1/(2*x^2 + 3) dx.
Equals Integral_{x=0..oo} 1/(3*x^2 + 2) dx.
Equals Integral_{x=0..oo} 1/(6*x^2 + 1) dx. (End)
Equals Integral_{x = 0..1} 1/(2*x^2 + 3*(1 - x)^2) dx. - Peter Bala, Jul 22 2022

A144410 a(n) = 4*(3*n+1)*(3*n+2).

Original entry on oeis.org

8, 80, 224, 440, 728, 1088, 1520, 2024, 2600, 3248, 3968, 4760, 5624, 6560, 7568, 8648, 9800, 11024, 12320, 13688, 15128, 16640, 18224, 19880, 21608, 23408, 25280, 27224, 29240, 31328, 33488, 35720, 38024, 40400, 42848, 45368, 47960, 50624, 53360, 56168, 59048, 62000, 65024, 68120, 71288, 74528, 77840, 81224, 84680, 88208, 91808, 95480
Offset: 0

Views

Author

Paul Curtz, Sep 30 2008

Keywords

Comments

The sequence lists all numbers k such that k+1 is a square and k+4 is divisible by 12. - Bruno Berselli, Sep 28 2017

Crossrefs

Programs

Formula

G.f.: 8*(1 + 7*x + x^2)/(1 - x)^3. - Michael De Vlieger, Sep 29 2017
a(n) = 8*A060544(n+1).
a(n) = A136016(2*n+1).
a(n) = a(m) + 36*(n - m)*(n + m + 1). For m = n-1, a(n) = a(n-1) + 72*n. - Bruno Berselli, Sep 29 2017
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 3. - Klaus Purath, Jul 05 2020
E.g.f.: 4*(2 +18*x +9*x^2)*exp(x). - G. C. Greubel, Mar 27 2021
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi/(12*sqrt(3)) (A244977).
Sum_{n>=0} (-1)^n/a(n) = log(2)/6. (End)
Showing 1-5 of 5 results.