cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A019675 Decimal expansion of Pi/8.

Original entry on oeis.org

3, 9, 2, 6, 9, 9, 0, 8, 1, 6, 9, 8, 7, 2, 4, 1, 5, 4, 8, 0, 7, 8, 3, 0, 4, 2, 2, 9, 0, 9, 9, 3, 7, 8, 6, 0, 5, 2, 4, 6, 4, 6, 1, 7, 4, 9, 2, 1, 8, 8, 8, 2, 2, 7, 6, 2, 1, 8, 6, 8, 0, 7, 4, 0, 3, 8, 4, 7, 7, 0, 5, 0, 7, 8, 5, 7, 7, 6, 1, 2, 4, 8, 2, 8, 5, 0, 4, 3, 5, 3, 1, 6, 7, 7, 6, 4, 6, 3, 3
Offset: 0

Views

Author

Keywords

Comments

Equals Integral_{x>=0} sin(4*x)/(4*x) dx. - Jean-François Alcover, Feb 28 2013
Consider 4 circles inscribed in a square. Inscribe a square in each circle. And finally, inscribe 4 circles inside each four small squares. Totally we get 16 small circles. Pi/8 is the ratio of the area of the 16 small circles to the area of initial square. See the link. - Kirill Ustyantsev, Apr 30 2020

Examples

			Pi/8 = 0.392699081698724154807830422909937860524646174921888227621868... - _Vladimir Joseph Stephan Orlovsky_, Dec 02 2009
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.4, p. 492.

Crossrefs

Programs

  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^100*(pi)/8))); // Vincenzo Librandi, Oct 07 2015
  • Mathematica
    RealDigits[N[Pi/8,6! ]] (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *)
  • PARI
    default(realprecision, 1002);
    eval(vecextract(Vec(Str(sumalt(n=0, (-1)^(n)/(4*n+2)))), "3..-2"))  \\ Gheorghe Coserea, Oct 06 2015
    

Formula

From Peter Bala, Nov 15 2016: (Start)
Pi/8 = Sum_{k >= 1} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)).
More generally, for n >= 0 we have 1/(2*n)! * Pi/4 = Sum_{k >= 1} (-1)^(k+n-1) * 1/Product_{j = -n..n} (2*k + 2*j - 1): when n = 0 we get the Madhava-Gregory-Leibniz series for Pi/4.
For N divisible by 4, we have the asymptotic expansion Pi/8 - Sum_{k = 1..N/2} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)) ~ -1/2*(1/N^3 - 2/N^5 + 31/N^7 - 692/N^9 + ...), where the sequence of unsigned coefficients [1, 2, 31, 692, ...] equals A024235. (End)
Equals Integral_{x = 0..1} x*sqrt(1 - x^4) dx. - Peter Bala, Oct 27 2019
Equals Integral_{x = 0..oo} sin(x)^6/x^4 dx = Sum_{n >= 1} sin(n)^6/n^4, by the Abel-Plana formula. - Peter Bala, Nov 04 2019
From Amiram Eldar, Jul 12 2020: (Start)
Equals arctan(sqrt(2) - 1).
Equals Sum_{k>=0} (-1)^k/(4*k+2).
Equals Sum_{k>=0} 1/((4*k+1)*(4*k+3)) = Sum_{k>=0} 1/A001539(k).
Equals Integral_{x=0..oo} dx/(x^2 + 16).
Equals Integral_{x=0..oo} dx/(x^4 + 4) = Integral_{x=0..oo} x/(x^4 + 4) dx.
Equals Integral_{x=0..oo} x/(x^4 + 1)^2 dx = Integral_{x=0..1} x/(x^4 + 1) dx.
Equals Integral_{x=0..1} x * arcsin(x) dx. (End)
From Kritsada Moomuang, Jun 18 2025: (Start)
Equals Integral_{x=0..oo} (x*log(x + 1))/((x^2 + 1)^2) dx.
Equals Integral_{x=0..oo} (x^3 - 3*x + 3*arctan(x))/(3*x^5) dx. (End)

A051062 a(n) = 16*n + 8.

Original entry on oeis.org

8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248, 264, 280, 296, 312, 328, 344, 360, 376, 392, 408, 424, 440, 456, 472, 488, 504, 520, 536, 552, 568, 584, 600, 616, 632, 648, 664, 680, 696, 712, 728, 744, 760, 776, 792, 808, 824, 840
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0(97).
n such that 32 is the largest power of 2 dividing A003629(k)^n-1 for any k. - Benoit Cloitre, Mar 23 2002
Continued fraction expansion of tanh(1/8). - Benoit Cloitre, Dec 17 2002
If Y and Z are 2-blocks of a (4n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 28 2007
General form: (q*n+x)*q x=+1; q=2=A016825, q=3=A017197, q=4=A119413, ... x=-1; q=3=A017233, q=4=A098502, ... x=+2; q=4=A051062, ... - Vladimir Joseph Stephan Orlovsky, Feb 16 2009
a(n)*n+1 = (4n+1)^2 and a(n)*(n+1)+1 = (4n+3)^2 are both perfect squares. - Carmine Suriano, Jun 01 2014
For all positive integers n, there are infinitely many positive integers k such that k*n + 1 and k*(n+1) + 1 are both perfect squares. Except for 8, all the numbers of this sequence are the smallest integers k which are solutions for getting two perfect squares. Example: a(1) = 24 and 24 * 1 + 1 = 25 = 5^2, then 24 * (1+1) + 1 = 49 = 7^2. [Reference AMM] - Bernard Schott, Sep 24 2017
Numbers k such that 3^k + 1 is divisible by 17*193. - Bruno Berselli, Aug 22 2018

References

  • Letter from Gary W. Adamson concerning Prouhet-Thue-Morse sequence, Nov 11 1999.

Crossrefs

Programs

Formula

a(n) = A118413(n+1,4) for n>3. - Reinhard Zumkeller, Apr 27 2006
a(n) = 32*n - a(n-1) for n>0, a(0)=8. - Vincenzo Librandi, Aug 06 2010
A003484(a(n)) = 8; A209675(a(n)) = 9. - Reinhard Zumkeller, Mar 11 2012
A007814(a(n)) = 3; A037227(a(n)) = 7. - Reinhard Zumkeller, Jun 30 2012
a(-1 - n) = - a(n). - Michael Somos, Jun 02 2014
Sum_{n>=0} (-1)^n/a(n) = Pi/32 (A244978). - Amiram Eldar, Feb 28 2023
From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 8*(1+x)/(1-x)^2.
E.g.f.: 8*exp(x)*(1 + 2*x).
a(n) = 8*A005408(n) = A008598(n) + 8 = A139098(n+1) - A139098(n).
a(n) = 4*A016825(n) = 2*A017113(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2)*sin(7*Pi/32).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(2)*cos(7*Pi/32). (End)

A019679 Decimal expansion of Pi/12.

Original entry on oeis.org

2, 6, 1, 7, 9, 9, 3, 8, 7, 7, 9, 9, 1, 4, 9, 4, 3, 6, 5, 3, 8, 5, 5, 3, 6, 1, 5, 2, 7, 3, 2, 9, 1, 9, 0, 7, 0, 1, 6, 4, 3, 0, 7, 8, 3, 2, 8, 1, 2, 5, 8, 8, 1, 8, 4, 1, 4, 5, 7, 8, 7, 1, 6, 0, 2, 5, 6, 5, 1, 3, 6, 7, 1, 9, 0, 5, 1, 7, 4, 1, 6, 5, 5, 2, 3, 3, 6, 2, 3, 5, 4, 4, 5, 1, 7, 6, 4, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Equals cone's volume (radius = 1/2, height = 1) and semi-sphere's volume (radius = 1/2). - Eric Desbiaux, Dec 08 2008
Decimal expansion of least x > 0 having cos(4x) = (cos 3x)^2. See A197476. - Clark Kimberling, Oct 15 2011
Multiplied by 10, decimal expansion of 5*Pi/6. - Alonso del Arte, Aug 19 2013
Volume between a cylinder and the inscribed sphere of diameter 1. - Omar E. Pol, Sep 25 2013

Examples

			Pi/12 = 0.2617993877991494365385536152732919070164307...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.4, p. 492.

Crossrefs

Programs

Formula

A003881 - A019673. - Omar E. Pol, Sep 25 2013
Equals Integral_{x = 0..1} x^2*sqrt(1 - x^6) dx. - Peter Bala, Oct 27 2019
Equals Sum_{k>=0} binomial(2*k,k)/((2*k+1)*4^(2*k+1)). - Amiram Eldar, May 30 2021
Constant divided by 10 = Pi/120 = 0.0261799387... = Sum_{n = -oo..oo} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)*(4*n+6)*(4*n+7)) (using the Eisenstein summation convention Sum_{n = -oo..oo} = lim_{N -> oo} Sum_{n = -N..N}). Note that 22/7 - Pi = 240*Sum_{n >= 1} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)*(4*n+6)*(4*n+7)). - Peter Bala, Nov 28 2021

A019683 Decimal expansion of Pi/16.

Original entry on oeis.org

1, 9, 6, 3, 4, 9, 5, 4, 0, 8, 4, 9, 3, 6, 2, 0, 7, 7, 4, 0, 3, 9, 1, 5, 2, 1, 1, 4, 5, 4, 9, 6, 8, 9, 3, 0, 2, 6, 2, 3, 2, 3, 0, 8, 7, 4, 6, 0, 9, 4, 4, 1, 1, 3, 8, 1, 0, 9, 3, 4, 0, 3, 7, 0, 1, 9, 2, 3, 8, 5, 2, 5, 3, 9, 2, 8, 8, 8, 0, 6, 2, 4, 1, 4, 2, 5, 2, 1, 7, 6, 5, 8, 3, 8, 8, 2, 3, 1, 6
Offset: 0

Views

Author

Keywords

Examples

			Pi/16 = 0.19634954084936207740391521145496893026232308746094411381... - _Vladimir Joseph Stephan Orlovsky_, Dec 02 2009
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.4.2, p. 494.

Crossrefs

Programs

Formula

From Peter Bala, Oct 27 2019: (Start)
Equals Integral_{x = 0..1} x^2*sqrt(1 - x^2) dx = Integral_{x = 0..1} x^3*sqrt(1 - x^8) dx.
Equals Integral_{x = 0..inf} x^2/(1 + x^2)^3 dx. (End)
From Amiram Eldar, Aug 04 2020: (Start)
Equals Sum_{k>=1} sin(k)^3 * cos(k)/k.
Equals Sum_{k>=1} sin(k)^3 * cos(k)^2/k.
Equals Sum_{k>=1} (-1)^(k+1) * sin((2*k-1)/4)/(2*k-1)^2. (End)

A244979 Decimal expansion of Pi/(2*sqrt(5)).

Original entry on oeis.org

7, 0, 2, 4, 8, 1, 4, 7, 3, 1, 0, 4, 0, 7, 2, 6, 3, 9, 3, 1, 5, 6, 3, 7, 4, 6, 4, 3, 2, 0, 4, 8, 9, 4, 7, 9, 9, 4, 6, 6, 5, 0, 9, 1, 8, 7, 0, 6, 7, 2, 0, 2, 4, 1, 9, 9, 8, 9, 7, 2, 1, 0, 2, 6, 1, 9, 2, 1, 4, 1, 8, 8, 0, 6, 1, 9, 1, 8, 8, 2, 0, 5, 1, 0, 4, 1, 4, 2, 4, 1, 5, 3, 6, 5, 7, 6, 7, 2, 4, 0, 2, 1, 5, 0, 7
Offset: 0

Views

Author

Jean-François Alcover, Jul 09 2014

Keywords

Examples

			0.702481473104072639315637464320489479946650918706720241998972102619214188...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi/(2*Sqrt[5]), 10, 105] // First
  • PARI
    Pi/sqrt(20) \\ Charles R Greathouse IV, Sep 30 2022

Formula

Equals Integral_(0..1) (1 + x^2)/(1 + 3*x^2 + x^4) dx.
From Peter Bala, Feb 16 2015: (Start)
Also equals beta(1/2, 1/2)/(2*sqrt(5)), where 'beta' is Euler's beta function.
Pi/(2*sqrt(5)) = Integral_{t = 0..a} (1 + t^2)*(1 + t^6)/(1 + t^10) dt = a + a^3/3 + a^7/7 + a^9/9 - a^11/11 - a^13/13 - a^17/17 - a^19/19 + ..., where a = 1/2(sqrt(5) - 1). Hint: differentiate atan( sqrt(5)*(t - t^3)/(1 - 3*t^2 + t^4) ). (End)
Equals (1/2)*Sum_{n >= 0} (-1)^n*( 1/(10*n + 1) + 1/(10*n + 3) + 1/(10*n + 7) + 1/(10*n + 9) ). Cf. A019692. - Peter Bala, Oct 30 2019
From Amiram Eldar, Aug 06 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 5) dx.
Equals 0.1 * Integral_{x=0..oo} log(1 + 5/x^2) dx. (End)
Equals Integral_{x = 0..1} 2/(4*x^2 + 5*(1 - x)^2) dx. - Peter Bala, Jul 22 2022

A244980 Decimal expansion of Pi/(2*sqrt(6)).

Original entry on oeis.org

6, 4, 1, 2, 7, 4, 9, 1, 5, 0, 8, 0, 9, 3, 2, 0, 4, 7, 7, 7, 2, 0, 1, 8, 1, 7, 9, 8, 3, 5, 5, 0, 3, 2, 0, 5, 7, 3, 3, 6, 3, 0, 3, 3, 3, 7, 8, 2, 0, 4, 6, 1, 6, 1, 5, 5, 0, 6, 9, 4, 8, 0, 3, 3, 7, 8, 1, 9, 9, 4, 1, 1, 7, 5, 6, 5, 1, 1, 0, 5, 0, 5, 1, 6, 6, 4, 3, 4, 5, 9, 5, 2, 6, 1, 9, 7, 2, 2, 0, 3, 7, 2, 5, 7, 9, 7
Offset: 0

Views

Author

Jean-François Alcover, Jul 09 2014

Keywords

Examples

			0.6412749150809320477720181798355032057336303337820461615506948033781994...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi/(2*Sqrt[6]), 10, 106] // First
  • PARI
    Pi/sqrt(24) \\ Charles R Greathouse IV, Oct 01 2022

Formula

Equals Integral_{x=0..1} (1 + x^2)/(1 + 4*x^2 + x^4) dx.
Equals beta(1/2, 1/2)/(2*sqrt(6)), where 'beta' is Euler's beta function.
From Amiram Eldar, Aug 15 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 6) dx.
Equals Integral_{x=0..oo} 1/(2*x^2 + 3) dx.
Equals Integral_{x=0..oo} 1/(3*x^2 + 2) dx.
Equals Integral_{x=0..oo} 1/(6*x^2 + 1) dx. (End)
Equals Integral_{x = 0..1} 1/(2*x^2 + 3*(1 - x)^2) dx. - Peter Bala, Jul 22 2022
Showing 1-6 of 6 results.