cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A017113 a(n) = 8*n + 4.

Original entry on oeis.org

4, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 124, 132, 140, 148, 156, 164, 172, 180, 188, 196, 204, 212, 220, 228, 236, 244, 252, 260, 268, 276, 284, 292, 300, 308, 316, 324, 332, 340, 348, 356, 364, 372, 380, 388, 396, 404, 412, 420, 428, 436, 444, 452, 460, 468
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0(65).
n such that 16 is the largest power of 2 dividing A003629(k)^n - 1 for any k. - Benoit Cloitre, Mar 23 2002
Continued fraction expansion of tanh(1/4). - Benoit Cloitre, Dec 17 2002
Consider all primitive Pythagorean triples (a,b,c) with c - a = 8, sequence gives values for b. (Corresponding values for a are A078371(n), while c follows A078370(n).) - Lambert Klasen (Lambert.Klasen(AT)gmx.net), Nov 19 2004
Also numbers of the form a^2 + b^2 + c^2 + d^2, where a,b,c,d are odd integers. - Alexander Adamchuk, Dec 01 2006
If X is an n-set and Y_i (i=1,2,3) mutually disjoint 2-subsets of X then a(n-5) is equal to the number of 4-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
A007814(a(n)) = 2; A037227(a(n)) = 5. - Reinhard Zumkeller, Jun 30 2012
Numbers k such that 3^k + 1 is divisible by 41. - Bruno Berselli, Aug 22 2018
Lexicographically smallest arithmetic progression of positive integers avoiding Fibonacci numbers. - Paolo Xausa, May 08 2023
From Martin Renner, May 24 2024: (Start)
Also number of points in a grid cross with equally long arms and a width of two points, e.g.:
* *
* * * *
* * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * *
* * * *
* *
etc. (End)

Crossrefs

First differences of A016742 (even squares).
Cf. A078370, A078371, A081770 (subsequence).

Programs

Formula

a(n) = A118413(n+1,3) for n > 2. - Reinhard Zumkeller, Apr 27 2006
a(n) = Sum_{k=0..4*n} (i^k+1)*(i^(4*n-k)+1), where i = sqrt(-1). - Bruno Berselli, Mar 19 2012
a(n) = 4*A005408(n). - Omar E. Pol, Apr 17 2016
E.g.f.: (8*x + 4)*exp(x). - G. C. Greubel, Apr 26 2018
G.f.: 4*(1+x)/(1-x)^2. - Wolfdieter Lang, Oct 27 2020
Sum_{n>=0} (-1)^n/a(n) = Pi/16 (A019683). - Amiram Eldar, Dec 11 2021
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2) * sin(3*Pi/16).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(2) * cos(3*Pi/16). (End)
a(n) = 2*A016825(n) = A008586(2*n+1). - Elmo R. Oliveira, Apr 10 2025

A019679 Decimal expansion of Pi/12.

Original entry on oeis.org

2, 6, 1, 7, 9, 9, 3, 8, 7, 7, 9, 9, 1, 4, 9, 4, 3, 6, 5, 3, 8, 5, 5, 3, 6, 1, 5, 2, 7, 3, 2, 9, 1, 9, 0, 7, 0, 1, 6, 4, 3, 0, 7, 8, 3, 2, 8, 1, 2, 5, 8, 8, 1, 8, 4, 1, 4, 5, 7, 8, 7, 1, 6, 0, 2, 5, 6, 5, 1, 3, 6, 7, 1, 9, 0, 5, 1, 7, 4, 1, 6, 5, 5, 2, 3, 3, 6, 2, 3, 5, 4, 4, 5, 1, 7, 6, 4, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Equals cone's volume (radius = 1/2, height = 1) and semi-sphere's volume (radius = 1/2). - Eric Desbiaux, Dec 08 2008
Decimal expansion of least x > 0 having cos(4x) = (cos 3x)^2. See A197476. - Clark Kimberling, Oct 15 2011
Multiplied by 10, decimal expansion of 5*Pi/6. - Alonso del Arte, Aug 19 2013
Volume between a cylinder and the inscribed sphere of diameter 1. - Omar E. Pol, Sep 25 2013

Examples

			Pi/12 = 0.2617993877991494365385536152732919070164307...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.4, p. 492.

Crossrefs

Programs

Formula

A003881 - A019673. - Omar E. Pol, Sep 25 2013
Equals Integral_{x = 0..1} x^2*sqrt(1 - x^6) dx. - Peter Bala, Oct 27 2019
Equals Sum_{k>=0} binomial(2*k,k)/((2*k+1)*4^(2*k+1)). - Amiram Eldar, May 30 2021
Constant divided by 10 = Pi/120 = 0.0261799387... = Sum_{n = -oo..oo} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)*(4*n+6)*(4*n+7)) (using the Eisenstein summation convention Sum_{n = -oo..oo} = lim_{N -> oo} Sum_{n = -N..N}). Note that 22/7 - Pi = 240*Sum_{n >= 1} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)*(4*n+6)*(4*n+7)). - Peter Bala, Nov 28 2021

A244978 Decimal expansion of Pi/32.

Original entry on oeis.org

0, 9, 8, 1, 7, 4, 7, 7, 0, 4, 2, 4, 6, 8, 1, 0, 3, 8, 7, 0, 1, 9, 5, 7, 6, 0, 5, 7, 2, 7, 4, 8, 4, 4, 6, 5, 1, 3, 1, 1, 6, 1, 5, 4, 3, 7, 3, 0, 4, 7, 2, 0, 5, 6, 9, 0, 5, 4, 6, 7, 0, 1, 8, 5, 0, 9, 6, 1, 9, 2, 6, 2, 6, 9, 6, 4, 4, 4, 0, 3, 1, 2, 0, 7, 1, 2, 6, 0, 8, 8, 2, 9, 1, 9, 4, 1, 1, 5, 8, 3, 7, 4, 4, 4, 2, 1
Offset: 0

Views

Author

Keywords

Examples

			0.0981747704246810387019576057274844651311615437304720569054670185096...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.

Crossrefs

Programs

Formula

Equals Integral_{x = 0..1} x^2/(1 + x^2)^3 dx.
Also equals beta(3/2, 1/2)/16, where 'beta' is Euler's beta function.
From Peter Bala, Oct 27 2019: (Start)
Equals Integral_{x = 0..1} x^4*sqrt(1 - x^2) dx = Integral_{x = 0..1} x^5*sqrt(1 - x^4) dx = Integral_{x = 0..1} x^7*sqrt(1 - x^16) dx.
Equals Integral_{x >= 0} x^4/(1 + x^2)^4 dx. (End)
From Amiram Eldar, Jul 13 2020: (Start)
Equals Integral_{x=0..oo} dx/(x^2 + 4)^2.
Equals Sum_{k>=1} sin(k)^3*cos(k)^3/k. (End)
From Peter Bala, Dec 08 2021: (Start)
Pi/32 = Sum_{n >= 1} (-1)^n*n^2/((4*n^2 - 1)*(4*n^2 - 9)).
Applying Euler's series transformation to this alternating sum gives
Pi/32 = Sum_{n >= 1} 2^(n-3)*n*(n+1)/((2*n+3)*binomial(2*n+2, n+1)). (End)

A136483 Number of unit square lattice cells inside quadrant of origin-centered circle of diameter n.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 6, 8, 13, 15, 19, 22, 28, 30, 37, 41, 48, 54, 64, 69, 77, 83, 94, 98, 110, 119, 131, 139, 152, 162, 172, 183, 199, 208, 226, 234, 253, 263, 281, 294, 308, 322, 343, 357, 377, 390, 412, 424, 447, 465, 488, 504, 528, 545, 567, 585, 612, 628, 654
Offset: 1

Views

Author

Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008

Keywords

Examples

			a(5) = 3 because a circle of radius 5/2 in the first quadrant encloses (2,1), (1,1), (1,2).
		

Crossrefs

Alternating merge of A136484 and A001182.

Programs

  • Magma
    A136483:= func< n | n eq 1 select 0 else (&+[Floor(Sqrt((n/2)^2-j^2)): j in [1..Floor(n/2)]]) >;
    [A136483(n): n in [1..100]]; // G. C. Greubel, Jul 28 2023
    
  • Mathematica
    Table[Sum[Floor[Sqrt[(n/2)^2 -k^2]], {k,Floor[n/2]}], {n,100}]
  • PARI
    a(n) = sum(k=1, n\2, sqrtint((n/2)^2 - k^2)); \\ Michel Marcus, Jul 28 2023
  • SageMath
    def A136483(n): return sum(isqrt((n/2)^2-j^2) for j in range(1,(n//2)+1))
    [A136483(n) for n in range(1,101)] # G. C. Greubel, Jul 28 2023
    

Formula

a(n) = Sum_{k=1..floor(n/2)} floor(sqrt((n/2)^2 - k^2)).
Lim_{n -> oo} a(n)/(n^2) -> Pi/16 (A019683).
a(n) = (1/4) * A136485(n) = (1/2) * A136513(n).
a(n) = [x^(n^2)] (theta_3(x^4) - 1)^2 / (4 * (1 - x)). - Ilya Gutkovskiy, Nov 23 2021

A136484 Number of unit square lattice cells inside quadrant of origin centered circle of diameter 2n+1.

Original entry on oeis.org

0, 1, 3, 6, 13, 19, 28, 37, 48, 64, 77, 94, 110, 131, 152, 172, 199, 226, 253, 281, 308, 343, 377, 412, 447, 488, 528, 567, 612, 654, 703, 750, 796, 847, 902, 957, 1013, 1068, 1129, 1187, 1252, 1313, 1378, 1446, 1511, 1582, 1650, 1725, 1800, 1877, 1955, 2034
Offset: 0

Views

Author

Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008

Keywords

Comments

Number of unit square lattice cells inside quadrant of origin centered circle of radius n+1/2.

Examples

			a(2) = 3 because a circle of radius 2+1/2 in the first quadrant encloses (2,1), (1,1), (1,2).
		

Crossrefs

Programs

  • Magma
    A136484:= func< n | n eq 0 select 0 else (&+[Floor(Sqrt((n+1/2)^2-j^2)): j in [1..n]]) >;
    [A136484(n): n in [0..100]]; // G. C. Greubel, Jul 29 2023
    
  • Mathematica
    Table[Sum[Floor[Sqrt[(n+1/2)^2 - k^2]], {k,n}], {n,0,100}]
  • SageMath
    def A136484(n): return sum(floor(sqrt((n+1/2)^2-k^2)) for k in range(1, n+1))
    [A136484(n) for n in range(101)] # G. C. Greubel, Jul 29 2023

Formula

a(n) = Sum_{k=1..n} floor(sqrt((n+1/2)^2 - k^2)).
a(n) = (1/2) * A136515(n).
a(n) = (1/4) * A136486(n).
a(n) = A136483(2*n+1).
Lim_{n -> oo} a(n)/(n^2) -> Pi/16 (A019683).

A157332 Denominators of Egyptian fraction for Pi/16 based on Machin's formula.

Original entry on oeis.org

5, -956, -375, 163823028, 15625, -15596225303980, -546875, 1247220779824098212, 17578125, -91597497639855832244124, -537109375, 6394838587727583881086964116, 15869140625, -431694043145875922302762745864588, -457763671875
Offset: 0

Views

Author

Jaume Oliver Lafont, Feb 27 2009

Keywords

Comments

Machin's formula: Pi/4 = 4*atan(1/5) - atan(1/239).
Sum_{n>=0} 1/a(n) = Pi/16 = atan(1/5) - (1/4)*atan(1/239).

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n mod 2=0 then return (-1)^(n/2)*(n+1)*5^(n+1);
        else return -4*(-1)^((n-1)/2)*n*(239)^n;
        fi;
      end;
    List([0..15], n-> a(n) ); # G. C. Greubel, Aug 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 15); Coefficients(R!( 5*(1-(5*x)^2)/(1+(5*x)^2)^2 - 4*239*x*(1-(239*x)^2)/(1+(239*x)^2)^2 )); // G. C. Greubel, Aug 26 2019
    
  • Maple
    seq(coeff(series(5*(1-(5*x)^2)/(1+(5*x)^2)^2 - 4*239*x*(1-(239*x)^2)/(1+(239*x)^2)^2, x, n+1), x, n), n = 0..15); # G. C. Greubel, Aug 26 2019
  • Mathematica
    CoefficientList[Series[5*(1-(5*x)^2)/(1+(5*x)^2)^2 - 4*239*x*(1-(239*x)^2)/(1+(239*x)^2)^2, {x,0,15}], x] (* G. C. Greubel, Aug 26 2019 *)
  • PARI
    my(x='x+O('x^15)); Vec(5*(1-(5*x)^2)/(1+(5*x)^2)^2 - 4*239*x*(1-(239*x)^2)/(1+(239*x)^2)^2) \\ G. C. Greubel, Aug 26 2019
    
  • Sage
    def A077952_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 5*(1-(5*x)^2)/(1+(5*x)^2)^2 - 4*239*x*(1-(239*x)^2)/(1+(239*x)^2)^2 ).list()
    A077952_list(15) # G. C. Greubel, Aug 26 2019
    

Formula

a(2n) = (2*n+1)*5^(2*n+1)*(-1)^n,
a(2n+1) = -4*(2*n+1)*239^(2*n+1)*(-1)^n.
G.f.: 5*(1-25*x^2)/(1+25*x^2)^2 - 956*x*(1-57121*x^2)/(1+57121*x^2)^2

Extensions

More terms from Colin Barker, Aug 07 2013

A019706 Decimal expansion of sqrt(Pi)/4.

Original entry on oeis.org

4, 4, 3, 1, 1, 3, 4, 6, 2, 7, 2, 6, 3, 7, 9, 0, 0, 6, 8, 2, 4, 5, 4, 1, 8, 7, 0, 8, 3, 5, 2, 8, 6, 2, 9, 5, 6, 9, 9, 3, 8, 7, 3, 6, 4, 0, 3, 0, 5, 9, 6, 7, 8, 2, 0, 5, 3, 4, 5, 1, 9, 4, 7, 4, 6, 3, 2, 2, 7, 8, 2, 1, 1, 4, 7, 7, 5, 8, 0, 4, 5, 3, 4, 3, 7, 3, 7, 6, 6, 4, 1, 8, 4, 6, 3, 6, 1, 6, 6
Offset: 0

Views

Author

Keywords

Examples

			0.44311346272637900682454187083528629569938736403059678...
		

Crossrefs

Cf. A019683.

Programs

  • Maple
    evalf(sqrt(Pi)/4,120); # Muniru A Asiru, Sep 22 2018
  • Mathematica
    First[RealDigits[Sqrt[Pi]/4, 10, 100]] (* Paolo Xausa, May 02 2024 *)
  • PARI
    sqrt(Pi)/4 \\ Altug Alkan, Sep 22 2018
    
  • PARI
    intnum(x=0, [oo, -8*I], sin(8*x)/sqrt(x)) \\ Gheorghe Coserea, Sep 23 2018
    
  • PARI
    intnum(x=[0, -1/2], [oo, 8*I], cos(8*x)/sqrt(x)) \\ Gheorghe Coserea, Sep 23 2018

Formula

Equals sqrt(A019683). - Michel Marcus, Aug 31 2014
From A.H.M. Smeets, Sep 22 2018: (Start)
Equals Integral_{x >= 0} sin(8x)/sqrt(x) dx [Gradshteyn and Ryzhik].
Equals Integral_{x >= 0} cos(8x)/sqrt(x) dx [Gradshteyn and Ryzhik]. (End)
From Amiram Eldar, Aug 13 2020: (Start)
Equals Integral_{x=0..oo} x * exp(-x^4) dx.
Equals Integral_{x=0..oo} x^2 * exp(-x^2) dx. (End)

A069071 a(n) = (2*n + 1)*((2*n + 1)^4 + 4).

Original entry on oeis.org

5, 255, 3145, 16835, 59085, 161095, 371345, 759435, 1419925, 2476175, 4084185, 6436435, 9765725, 14349015, 20511265, 28629275, 39135525, 52522015, 69344105, 90224355, 115856365, 147008615, 184528305, 229345195, 282475445, 345025455, 418195705, 503284595, 601692285
Offset: 0

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

The formula for Pi in the formula section was discovered by the mathematician and astronomer Nilakantha Somayaji (1444-1544) (Roy, 1990). - Amiram Eldar, Jan 18 2023

Crossrefs

Cf. A019683.

Programs

  • Mathematica
    a[n_] := (2*n + 1)*((2*n + 1)^4 + 4); Array[a, 30, 0] (* Amiram Eldar, Jul 16 2022 *)

Formula

Pi = 16 * Sum_{n>=0} (-1)^n/a(n).
From Elmo R. Oliveira, Sep 03 2025: (Start)
G.f.: 5*(1 + x)*(1 + 44*x + 294*x^2 + 44*x^3 + x^4)/(x-1)^6.
E.g.f.: (5 + 250*x + 1320*x^2 + 1360*x^3 + 400*x^4 + 32*x^5)*exp(x).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). (End)

A132706 Decimal expansion of 16/Pi.

Original entry on oeis.org

5, 0, 9, 2, 9, 5, 8, 1, 7, 8, 9, 4, 0, 6, 5, 0, 7, 4, 4, 6, 0, 4, 2, 8, 0, 4, 2, 7, 9, 2, 0, 4, 5, 9, 5, 8, 5, 1, 0, 2, 7, 0, 8, 6, 6, 3, 6, 9, 4, 6, 0, 6, 3, 5, 9, 9, 2, 5, 3, 5, 5, 0, 0, 9, 8, 8, 4, 6, 9, 7, 5, 2, 4, 2, 9, 5, 2, 4, 9, 1, 2, 2, 8, 8, 3, 6, 4, 1, 6, 8, 8, 5, 2, 0, 0, 9, 8, 7, 5, 0, 5, 9, 4, 3, 3
Offset: 1

Views

Author

Omar E. Pol, Aug 31 2007

Keywords

Examples

			5.092958178940650744604280427920459585102708663694606359925355....
		

References

  • Bruce C. Berndt, Ramanujan’s Notebooks, Part II, Springer-Verlag, New York, 1989.

Crossrefs

Programs

Formula

Equals 4 + Sum_{k>=0} binomial(2*k,k)^2/((k+1)^2*16^k). - Amiram Eldar, May 21 2021
16/Pi = 5 + 1^2/(10 + 3^2/(10 + 5^2/(10 + ...))). See Berndt, Entry 25, p. 140, with n = 0 and x = 5. - Peter Bala, Feb 18 2024

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 02 2009
Showing 1-9 of 9 results.