A136485 Number of unit square lattice cells enclosed by origin centered circle of diameter n.
0, 0, 4, 4, 12, 16, 24, 32, 52, 60, 76, 88, 112, 120, 148, 164, 192, 216, 256, 276, 308, 332, 376, 392, 440, 476, 524, 556, 608, 648, 688, 732, 796, 832, 904, 936, 1012, 1052, 1124, 1176, 1232, 1288, 1372, 1428, 1508, 1560, 1648, 1696, 1788, 1860, 1952, 2016
Offset: 1
Examples
a(3) = 4 because a circle centered at the origin and of radius 3/2 encloses (-1,-1), (-1,1), (1,-1), (1,1).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Magma
A136485:= func< n | n le 1 select 0 else 4*(&+[Floor(Sqrt((n/2)^2-j^2)): j in [1..Floor(n/2)]]) >; [A136485(n): n in [1..100]]; // G. C. Greubel, Jul 29 2023
-
Mathematica
Table[4*Sum[Floor[Sqrt[(n/2)^2 - k^2]], {k,Floor[n/2]}], {n,100}]
-
SageMath
def A136485(n): return 4*sum(floor(sqrt((n/2)^2-k^2)) for k in range(1,(n//2)+1)) [A136485(n) for n in range(1,101)] # G. C. Greubel, Jul 29 2023
Formula
a(n) = 4 * Sum_{k=1..floor(n/2)} floor(sqrt((n/2)^2 - k^2)).
a(n) = 4 * A136483(n).
a(n) = 2 * A136513(n).
Lim_{n -> oo} a(n)/(n^2) -> Pi/4 (A003881).
a(n) = [x^(n^2)] (theta_3(x^4) - 1)^2 / (1 - x). - Ilya Gutkovskiy, Nov 24 2021
Comments