cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244979 Decimal expansion of Pi/(2*sqrt(5)).

Original entry on oeis.org

7, 0, 2, 4, 8, 1, 4, 7, 3, 1, 0, 4, 0, 7, 2, 6, 3, 9, 3, 1, 5, 6, 3, 7, 4, 6, 4, 3, 2, 0, 4, 8, 9, 4, 7, 9, 9, 4, 6, 6, 5, 0, 9, 1, 8, 7, 0, 6, 7, 2, 0, 2, 4, 1, 9, 9, 8, 9, 7, 2, 1, 0, 2, 6, 1, 9, 2, 1, 4, 1, 8, 8, 0, 6, 1, 9, 1, 8, 8, 2, 0, 5, 1, 0, 4, 1, 4, 2, 4, 1, 5, 3, 6, 5, 7, 6, 7, 2, 4, 0, 2, 1, 5, 0, 7
Offset: 0

Views

Author

Jean-François Alcover, Jul 09 2014

Keywords

Examples

			0.702481473104072639315637464320489479946650918706720241998972102619214188...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi/(2*Sqrt[5]), 10, 105] // First
  • PARI
    Pi/sqrt(20) \\ Charles R Greathouse IV, Sep 30 2022

Formula

Equals Integral_(0..1) (1 + x^2)/(1 + 3*x^2 + x^4) dx.
From Peter Bala, Feb 16 2015: (Start)
Also equals beta(1/2, 1/2)/(2*sqrt(5)), where 'beta' is Euler's beta function.
Pi/(2*sqrt(5)) = Integral_{t = 0..a} (1 + t^2)*(1 + t^6)/(1 + t^10) dt = a + a^3/3 + a^7/7 + a^9/9 - a^11/11 - a^13/13 - a^17/17 - a^19/19 + ..., where a = 1/2(sqrt(5) - 1). Hint: differentiate atan( sqrt(5)*(t - t^3)/(1 - 3*t^2 + t^4) ). (End)
Equals (1/2)*Sum_{n >= 0} (-1)^n*( 1/(10*n + 1) + 1/(10*n + 3) + 1/(10*n + 7) + 1/(10*n + 9) ). Cf. A019692. - Peter Bala, Oct 30 2019
From Amiram Eldar, Aug 06 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 5) dx.
Equals 0.1 * Integral_{x=0..oo} log(1 + 5/x^2) dx. (End)
Equals Integral_{x = 0..1} 2/(4*x^2 + 5*(1 - x)^2) dx. - Peter Bala, Jul 22 2022