A244980 Decimal expansion of Pi/(2*sqrt(6)).
6, 4, 1, 2, 7, 4, 9, 1, 5, 0, 8, 0, 9, 3, 2, 0, 4, 7, 7, 7, 2, 0, 1, 8, 1, 7, 9, 8, 3, 5, 5, 0, 3, 2, 0, 5, 7, 3, 3, 6, 3, 0, 3, 3, 3, 7, 8, 2, 0, 4, 6, 1, 6, 1, 5, 5, 0, 6, 9, 4, 8, 0, 3, 3, 7, 8, 1, 9, 9, 4, 1, 1, 7, 5, 6, 5, 1, 1, 0, 5, 0, 5, 1, 6, 6, 4, 3, 4, 5, 9, 5, 2, 6, 1, 9, 7, 2, 2, 0, 3, 7, 2, 5, 7, 9, 7
Offset: 0
Examples
0.6412749150809320477720181798355032057336303337820461615506948033781994...
References
- George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Beta Function
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[Pi/(2*Sqrt[6]), 10, 106] // First
-
PARI
Pi/sqrt(24) \\ Charles R Greathouse IV, Oct 01 2022
Formula
Equals Integral_{x=0..1} (1 + x^2)/(1 + 4*x^2 + x^4) dx.
Equals beta(1/2, 1/2)/(2*sqrt(6)), where 'beta' is Euler's beta function.
From Amiram Eldar, Aug 15 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 6) dx.
Equals Integral_{x=0..oo} 1/(2*x^2 + 3) dx.
Equals Integral_{x=0..oo} 1/(3*x^2 + 2) dx.
Equals Integral_{x=0..oo} 1/(6*x^2 + 1) dx. (End)
Equals Integral_{x = 0..1} 1/(2*x^2 + 3*(1 - x)^2) dx. - Peter Bala, Jul 22 2022