A244991 Numbers whose greatest prime factor is a prime with an odd index; n such that A006530(n) is in A031368.
2, 4, 5, 8, 10, 11, 15, 16, 17, 20, 22, 23, 25, 30, 31, 32, 33, 34, 40, 41, 44, 45, 46, 47, 50, 51, 55, 59, 60, 62, 64, 66, 67, 68, 69, 73, 75, 77, 80, 82, 83, 85, 88, 90, 92, 93, 94, 97, 99, 100, 102, 103, 109, 110, 115, 118, 119, 120, 121, 123, 124, 125, 127, 128
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Feb 08 2021: (Start) The sequence of terms together with their prime indices begins: 2: {1} 32: {1,1,1,1,1} 64: {1,1,1,1,1,1} 4: {1,1} 33: {2,5} 66: {1,2,5} 5: {3} 34: {1,7} 67: {19} 8: {1,1,1} 40: {1,1,1,3} 68: {1,1,7} 10: {1,3} 41: {13} 69: {2,9} 11: {5} 44: {1,1,5} 73: {21} 15: {2,3} 45: {2,2,3} 75: {2,3,3} 16: {1,1,1,1} 46: {1,9} 77: {4,5} 17: {7} 47: {15} 80: {1,1,1,1,3} 20: {1,1,3} 50: {1,3,3} 82: {1,13} 22: {1,5} 51: {2,7} 83: {23} 23: {9} 55: {3,5} 85: {3,7} 25: {3,3} 59: {17} 88: {1,1,1,5} 30: {1,2,3} 60: {1,1,2,3} 90: {1,2,2,3} 31: {11} 62: {1,11} 92: {1,1,9} (End)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10001
Crossrefs
Complement: A244990.
Looking at least instead of greatest prime index gives A026804.
The partitions with these Heinz numbers are counted by A027193.
The case where Omega is odd also is A340386.
A001222 counts prime factors.
A056239 adds up prime indices.
A300063 ranks partitions of odd numbers.
A061395 selects maximum prime index.
A066208 ranks partitions into odd parts.
A112798 lists the prime indices of each positive integer.
A340931 ranks odd-length partitions of odd numbers.
Programs
-
Mathematica
Select[Range[100],OddQ[PrimePi[FactorInteger[#][[-1,1]]]]&] (* Gus Wiseman, Feb 08 2021 *)
Formula
For all n, A244989(a(n)) = n.
Comments