cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244996 Decimal expansion of the moment derivative W_3'(0) associated with the radial probability distribution of a 3-step uniform random walk.

Original entry on oeis.org

3, 2, 3, 0, 6, 5, 9, 4, 7, 2, 1, 9, 4, 5, 0, 5, 1, 4, 0, 9, 3, 6, 3, 6, 5, 1, 0, 7, 2, 3, 8, 0, 6, 3, 9, 4, 0, 7, 2, 2, 4, 1, 8, 4, 0, 7, 8, 0, 5, 8, 7, 0, 1, 6, 1, 3, 0, 8, 6, 8, 4, 7, 0, 3, 6, 1, 0, 1, 5, 1, 1, 2, 8, 0, 7, 2, 6, 9, 8, 4, 2, 0, 8, 3, 7, 8, 7, 6, 0, 9, 0, 8, 9, 3, 7, 1, 3, 9, 2, 0, 7, 3, 4, 8, 7
Offset: 0

Views

Author

Jean-François Alcover, Jul 09 2014

Keywords

Comments

This constant is also associated with the asymptotic number of lozenge tilings; see the references by Santos (2004, 2005). It is called the "maximum asymptotic normalized entropy of lozenge tilings of a planar region". Santos (2004, 2005) mentions that is computed in Cohn et al. (2000). For discussion of lozenge tilings, see for example the references for sequences A122722 and A273464. - Petros Hadjicostas, Sep 13 2019

Examples

			0.3230659472194505140936365107238063940722418407805870161308684703610151128...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003; see Section 3.10, Kneser-Mahler Polynomial Constants, p. 232.

Crossrefs

Programs

  • Mathematica
    Clausen2[x_] := Im[PolyLog[2, Exp[x*I]]]; RealDigits[(1/Pi)*Clausen2[Pi/3], 10, 105] // First
  • PARI
    imag(polylog(2,exp(Pi*I/3)))/Pi \\ Charles R Greathouse IV, Aug 27 2014

Formula

W_3'(0) = (1/Pi)*Cl2[Pi/3] = (3/(2*Pi))*Cl2[2*Pi/3], where Cl2 is the Clausen function.
W_3'(0) = integral_{y=1/6..5/6} log(2*sin(Pi*y)).
Also equals log(A242710).