A244996 Decimal expansion of the moment derivative W_3'(0) associated with the radial probability distribution of a 3-step uniform random walk.
3, 2, 3, 0, 6, 5, 9, 4, 7, 2, 1, 9, 4, 5, 0, 5, 1, 4, 0, 9, 3, 6, 3, 6, 5, 1, 0, 7, 2, 3, 8, 0, 6, 3, 9, 4, 0, 7, 2, 2, 4, 1, 8, 4, 0, 7, 8, 0, 5, 8, 7, 0, 1, 6, 1, 3, 0, 8, 6, 8, 4, 7, 0, 3, 6, 1, 0, 1, 5, 1, 1, 2, 8, 0, 7, 2, 6, 9, 8, 4, 2, 0, 8, 3, 7, 8, 7, 6, 0, 9, 0, 8, 9, 3, 7, 1, 3, 9, 2, 0, 7, 3, 4, 8, 7
Offset: 0
Examples
0.3230659472194505140936365107238063940722418407805870161308684703610151128...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003; see Section 3.10, Kneser-Mahler Polynomial Constants, p. 232.
Links
- Jonathan M. Borwein, Armin Straub, James Wan, and Wadim Zudilin, Densities of Short Uniform Random Walks, Canad. J. Math. 64(1) (2012), 961-990; see p. 978.
- Henry Cohn, Richard Kenyon, and James Propp, A variational principle for domino tilings, arXiv:math/0008220 [math.CO], 2000.
- Henry Cohn, Richard Kenyon, and James Propp, A variational principle for domino tilings, J. Amer. Math. Soc. 14(2) (2000), 297-346.
- Francisco Santos, The Cayley trick and triangulations of products of simplices, arXiv:math/0312069 [math.CO], 2004; see part (2) of Theorem 1 (p. 2, possible typo), Lemma 4.8 (p. 22), and Theorem 4.9 (p. 22).
- Francisco Santos, The Cayley trick and triangulations of products of simplices, Cont. Math. 374 (2005), 151-177.
- Eric Weisstein's MathWorld, Clausen's Integral.
- Eric Weisstein's MathWorld, Lobachevsky's Function.
- Wikipedia, Lozenge.
- Wikipedia, Clausen function.
Programs
-
Mathematica
Clausen2[x_] := Im[PolyLog[2, Exp[x*I]]]; RealDigits[(1/Pi)*Clausen2[Pi/3], 10, 105] // First
-
PARI
imag(polylog(2,exp(Pi*I/3)))/Pi \\ Charles R Greathouse IV, Aug 27 2014
Formula
W_3'(0) = (1/Pi)*Cl2[Pi/3] = (3/(2*Pi))*Cl2[2*Pi/3], where Cl2 is the Clausen function.
W_3'(0) = integral_{y=1/6..5/6} log(2*sin(Pi*y)).
Also equals log(A242710).
Comments