A244997 Decimal expansion of the moment derivative W_4'(0) associated with the radial probability distribution of a 4-step uniform random walk.
4, 2, 6, 2, 7, 8, 3, 9, 8, 8, 1, 7, 5, 0, 5, 7, 9, 0, 9, 2, 3, 5, 2, 1, 4, 2, 6, 5, 9, 6, 1, 6, 6, 8, 7, 3, 0, 5, 8, 0, 0, 6, 7, 6, 9, 6, 2, 9, 6, 3, 5, 1, 0, 7, 5, 4, 1, 6, 0, 6, 4, 5, 8, 0, 2, 6, 5, 2, 9, 4, 5, 1, 2, 2, 9, 1, 1, 6, 5, 8, 1, 4, 8, 9, 1, 2, 4, 1, 8, 8, 3, 3, 2, 2, 4, 2, 9, 4, 3, 5, 8, 5, 0, 4, 8
Offset: 0
Examples
0.42627839881750579092352142659616687305800676962963510754160645802652945...
Links
- Jonathan M. Borwein, Armin Straub, James Wan, and Wadim Zudilin, Densities of Short Uniform Random Walks p. 978, Canad. J. Math. 64(2012), 961-990.
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 142.
Crossrefs
Cf. A244996.
Programs
-
Mathematica
RealDigits[(7/2)*Zeta[3]/Pi^2, 10, 105] // First
Formula
W_4'(0) = (7/2)*zeta(3)/Pi^2.
W_4'(0) = integral over the square [0,Pi]x[0,Pi] of log(3+2*cos(x)+2*cos(y)+2*cos(x-y)) dx dy.