A244999 Decimal expansion of the moment derivative W_5'(0) associated with the radial probability distribution of a 5-step uniform random walk.
5, 4, 4, 4, 1, 2, 5, 6, 1, 7, 5, 2, 1, 8, 5, 5, 8, 5, 1, 9, 5, 8, 7, 8, 0, 6, 2, 7, 4, 5, 0, 2, 7, 6, 7, 6, 6, 6, 6, 0, 5, 2, 8, 0, 2, 0, 2, 8, 5, 2, 7, 4, 4, 2, 2, 8, 7, 0, 2, 8, 4, 9, 3, 9, 0, 2, 1, 4, 3, 6, 9, 1, 4, 2, 9, 2, 6, 6, 8, 3, 8, 7, 0, 5, 8, 4, 9, 2, 4, 1, 5, 7
Offset: 0
Examples
0.54441256175218558519587806274502767666605280202852744228702849390214369...
Links
- Jonathan M. Borwein, Armin Straub, James Wan, and Wadim Zudilin, Densities of Short Uniform Random Walks p. 978, Canad. J. Math. 64(2012), 961-990.
Programs
-
Mathematica
digits = 92; Log[2] - EulerGamma - NIntegrate[(BesselJ[0, x]^5 - 1)/x, {x, 0, 1}, WorkingPrecision -> digits + 20] - NIntegrate[BesselJ[0, x]^5/x, {x, 1, Infinity}, WorkingPrecision -> digits + 20] // RealDigits[#, 10, digits] & // First
Formula
W_5'(0) = log(2) - gamma - integral_{x=0..1}((J_0(x)^5-1)/x) - integral_{x>1}(J_0(x)^5/x), where J_0 is the Bessel function of the first kind.