A245022 Integers with precisely three partitions into sums of four squares of nonnegative numbers.
18, 25, 26, 27, 28, 33, 37, 38, 41, 43, 51, 53, 55, 59, 60, 62, 72, 79, 92, 95, 104, 112, 152, 240, 248, 288, 368, 416, 448, 608, 960, 992, 1152, 1472, 1664, 1792, 2432, 3840, 3968, 4608, 5888, 6656, 7168, 9728, 15360, 15872, 18432, 23552, 26624, 28672
Offset: 1
Keywords
Examples
a(1) = 18 = 16 + 1 + 1 + 0 = 9 + 9 + 0 + 0 = 9 + 4 + 4 + 1; a(2) = 25 = 25 + 0 + 0 + 0 = 16 + 9 + 0 + 0 = 16 + 4 + 4 + 1; a(3) = 26 = 25 + 1 + 0 + 0 = 16 + 9 + 1 + 0 = 9 + 9 + 4 + 4; a(4) = 27 = 25 + 1 + 1 + 0 = 16 + 9 + 1 + 1 = 9 + 9 + 9 + 0; a(5) = 28 = 25 + 1 + 1 + 1 = 16 + 4 + 4 + 4 = 9 + 9 + 9 + 1; a(6) = 33 = 25 + 4 + 4 + 0 = 16 + 16 + 1 + 0 = 16 + 9 + 4 + 4; a(7) = 37 = 36 + 1 + 0 + 0 = 25 + 4 + 4 + 4 = 16 + 16 + 4 + 1; a(8) = 38 = 36 + 1 + 1 + 0 = 25 + 9 + 4 + 0 = 16 + 9 + 9 + 4; a(9) = 41 = 36 + 4 + 1 + 0 = 25 + 16 + 0 + 0 = 16 + 16 + 9 + 0; a(10) = 43 = 25 + 16 + 1 + 1 = 25 + 9 + 9 + 0 = 16 + 9 + 9 + 9; a(11) = 51 = 49 + 1 + 1 + 0 = 25 + 25 + 1 + 0 = 25 + 16 + 9 + 1; a(12) = 53 = 49 + 4 + 0 + 0 = 36 + 16 + 1 + 0 = 36 + 9 + 4 + 4.
Links
Programs
-
Haskell
a245022 n = a245022_list !! (n-1) a245022_list = filter ((== 3) . a002635) [0..]
-
Mathematica
Select[ Range@ 30000, Length@PowersRepresentations[#, 4, 2] == 3 &] (* Robert G. Wilson v, Oct 27 2017 *)
Extensions
a(44)-a(50) from Robert Price, Oct 26 2017
Comments