cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245056 Primes in the sequence A249134/12.

Original entry on oeis.org

2, 109, 157, 167, 197, 211, 227, 317, 337, 349, 353, 389, 421, 439, 449, 457, 521, 541, 547, 563, 571, 587, 599, 613, 617, 647, 677, 701, 733, 757, 769, 821, 823, 827, 857, 859, 877, 881, 967, 977, 983, 991, 1097, 1153, 1163, 1187, 1217, 1231, 1237, 1249
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 22 2014

Keywords

Comments

a(n) is in the sequence if Bernoulli number B(12*a(n)) has denominator 2730 and a(n) is prime.
2 together with primes p such that 2p+1, 4p+1, 6p+1, and 12p+1 are all composite. - Charles R Greathouse IV, Oct 22 2014

Crossrefs

Programs

  • Magma
    [2] cat [n: n in [0..1500] | IsPrime(n) and not IsPrime(2*n+1) and not IsPrime(4*n+1) and not IsPrime(6*n+1) and not IsPrime(12*n+1)]; // Vincenzo Librandi, Oct 23 2014
  • Mathematica
    Reap[For[n = 0, n <= 10^4, n = n + 12, If[Denominator[BernoulliB[n]] == 2730 && PrimeQ[n/12], Print[n/12]; Sow[n/12]]]][[2, 1]]
    Flatten[{2, Select[Table[Prime[k], {k, 300}], Not[PrimeQ[2*# + 1]] && Not[PrimeQ[4*# + 1]] && Not[PrimeQ[6*# + 1]] && Not[PrimeQ[12*# + 1]] &]}] (* Vaclav Kotesovec, Aug 03 2019 *)
  • PARI
    is(n)=n==2 || (isprime(n) && !isprime(2*n+1) && !isprime(4*n+1) && !isprime(6*n+1) && !isprime(12*n+1)) \\ Charles R Greathouse IV, Oct 22 2014
    

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Oct 22 2014