A245064 Primes p such that p minus its digit sum is a perfect cube.
2, 3, 5, 7, 31, 37, 223, 227, 229, 743, 1741, 1747, 3391, 5851, 5857, 9281, 9283, 13841, 19709, 27011, 27017, 35963, 35969, 46681, 46687, 59341, 74101, 91141, 110603, 110609, 132679, 373273, 474581, 474583, 729023, 804383, 1061227, 1259743, 1259749, 1481573, 2000393
Offset: 1
Examples
37 is in the sequence because it is prime. Also, 37 - (3 + 7 ) = 27 = 3^3: a perfect cube. 743 is in the sequence because it is prime. Also, 743 - (7 + 4 + 3) = 729 = 9^3: a perfect cube.
Links
- K. D. Bajpai and Jens Kruse Andersen, Table of n, a(n) for n = 1..10000 (first 274 terms from K. D. Bajpai)
Programs
-
Maple
dmax:= 9; # to get all entries < 10^dmax cmax:= floor(10^(dmax/3)); count:= 0; for m from 0 to cmax do for p from m^3 to m^3 + 9*dmax do if p - convert(convert(p,base,10),`+`) = m^3 and isprime(p) then count:= count+1; A[count]:= p; fi od od; {seq(A[i],i=1..count)}; # Robert Israel, Jul 15 2014
-
Mathematica
Select[Prime[Range[200000]], IntegerQ[CubeRoot[# - Apply[Plus, IntegerDigits[#]]]] &]
-
PARI
digsum(n) = my(d=eval(Vec(Str(n)))); sum(i=1, #d, d[i]) s=[]; forprime(p=2, 2002000, if(ispower(p-digsum(p), 3), s=concat(s, p))); s \\ Colin Barker, Jul 15 2014