cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245067 Number of three-dimensional random walks with 2n steps in the wedge region x >= y >= z, beginning and ending at the origin without crossing the wedge boundary.

Original entry on oeis.org

1, 2, 12, 120, 1610, 25956, 474012, 9475752, 202921290, 4587734580, 108376022040, 2654745191280, 67043341981980, 1737717447946200, 46062204663294000, 1245096242017227360, 34239776369652506970, 956050033694583839220
Offset: 0

Views

Author

Jean-François Alcover, Nov 12 2014

Keywords

Examples

			For 2n=4, the 12 acceptable walks are:
(0, 0, -1), (0, -1, -1), (0, 0, -1), (0 ,0, 0);
(0, 0, -1), (0, 0, 0), (0, 0, -1), (0 ,0, 0);
(0, 0, -1), (0, 0, 0), (1, 0, 0), (0 ,0, 0);
(0, 0, -1), (1, 0, -1), (0, 0, -1), (0 ,0, 0);
(0, 0, -1), (1, 0, -1), (1, 0, 0), (0 ,0, 0);
(1, 0, 0), (0, -1, -1), (0, 0, -1), (0 ,0, 0);
(1, 0, 0), (0, 0, 0), (0, 0, -1), (0 ,0, 0);
(1, 0, 0), (0, 0, 0), (1, 0, 0), (0 ,0, 0);
(1, 0, 0), (1, 0, -1), (0, 0, -1), (0 ,0, 0);
(1, 0, 0), (1, 0, -1), (1, 0, 0), (0 ,0, 0);
(1, 0, 0), (1, 1, 0), (0, 0, -1), (0 ,0, 0);
(1, 0, 0), (1, 1, 0), (1, 0, 0), (0 ,0, 0).
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9 Polya's random walk constants, p. 326.

Crossrefs

Programs

  • Mathematica
    a[n_] := CatalanNumber[n]*HypergeometricPFQ[{1/2, -n-1, -n}, {2, 2}, 4]; Table[a[n], {n, 0, 20}]

Formula

a(n) = sum_{k=0..n} (2n)!*(2k)!/((n-k)!*(n+1-k)!*k!^2*(k+1)!^2).
a(n) = C(n) * 3F2(1/2, -n-1, -n; 2, 2; 4) where C(n) is the n-th Catalan number and 3F2 the hypergeometric function.
a(n) ~ 2^(2*n-4) * 3^(2*n+9/2) / (Pi^(3/2) * n^(9/2)). - Vaclav Kotesovec, Nov 13 2014
Recurrence: n*(n+2)^2*a(n) = 2*(2*n-1)*(10*n^2 + 2*n - 3)*a(n-1) - 36*(n-1)*(2*n-3)*(2*n-1)*a(n-2). - Vaclav Kotesovec, May 14 2016