cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245080 Numbers such that omega(a(n)) is a proper divisor of bigomega(a(n)).

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 36, 40, 49, 54, 56, 64, 81, 88, 96, 100, 104, 121, 125, 128, 135, 136, 144, 152, 160, 169, 184, 189, 196, 216, 224, 225, 232, 240, 243, 248, 250, 256, 289, 296, 297, 324, 328, 336, 343, 344, 351, 352, 360, 361, 375, 376, 384, 400, 416, 424, 441, 459
Offset: 1

Views

Author

Stanislav Sykora, Jul 11 2014

Keywords

Comments

All proper powers of any number greater than 1 (A001597(n), n>1) are a subset of this sequence. On the other hand, this is a subset of A067340 which admits also numbers k for which bigomega(k) = omega(k). In particular, prime numbers are excluded.
The density of these numbers, i.e., the ratio n/a(n), apparently decreases with n, reaching 0.04420... for n = 10000000. Conjecture: n/a(n) might have a nonzero limit below 0.0427 (the density found in the interval 9500000 < n <= 10000000).
There are 40134838 terms in the range 10^9 <= k <= 2*10^9. - Hugo Pfoertner, Oct 28 2024

Examples

			240 is in the sequence because 240=5^1*3^1*2^4. Hence omega(240)=3 (three distinct prime divisors) is a proper divisor of bigomega(240)=6 (six prime divisors with multiplicity).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500], Divisible[PrimeOmega[#], PrimeNu[#]] && PrimeNu[#] != PrimeOmega[#] &] (* Kritsada Moomuang, Oct 27 2024 *)
  • PARI
    OmegaTest(n)=(bigomega(n)>omega(n))&&(bigomega(n)%omega(n)==0);
    Ntest(nmax,test)={my(k=1,n=0,v);v=vector(nmax);while(1,n++;if(test(n),v[k]=n;k++;if(k>nmax,break)););return(v);}
    Ntest(20000,OmegaTest)
    
  • PARI
    is_a245080(n) = my(F=factor(n), o=omega(F), O=bigomega(F)); O>o && O%o==0; \\ Hugo Pfoertner, Oct 28 2024