A245080 Numbers such that omega(a(n)) is a proper divisor of bigomega(a(n)).
4, 8, 9, 16, 24, 25, 27, 32, 36, 40, 49, 54, 56, 64, 81, 88, 96, 100, 104, 121, 125, 128, 135, 136, 144, 152, 160, 169, 184, 189, 196, 216, 224, 225, 232, 240, 243, 248, 250, 256, 289, 296, 297, 324, 328, 336, 343, 344, 351, 352, 360, 361, 375, 376, 384, 400, 416, 424, 441, 459
Offset: 1
Keywords
Examples
240 is in the sequence because 240=5^1*3^1*2^4. Hence omega(240)=3 (three distinct prime divisors) is a proper divisor of bigomega(240)=6 (six prime divisors with multiplicity).
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..20000
- Wikipedia, Arithmetic functions
Programs
-
Mathematica
Select[Range[500], Divisible[PrimeOmega[#], PrimeNu[#]] && PrimeNu[#] != PrimeOmega[#] &] (* Kritsada Moomuang, Oct 27 2024 *)
-
PARI
OmegaTest(n)=(bigomega(n)>omega(n))&&(bigomega(n)%omega(n)==0); Ntest(nmax,test)={my(k=1,n=0,v);v=vector(nmax);while(1,n++;if(test(n),v[k]=n;k++;if(k>nmax,break)););return(v);} Ntest(20000,OmegaTest)
-
PARI
is_a245080(n) = my(F=factor(n), o=omega(F), O=bigomega(F)); O>o && O%o==0; \\ Hugo Pfoertner, Oct 28 2024
Comments