A245089 The unique integer r with |r| < prime(n)/2 such that B_{prime(n)-2}(1/3) == r (mod prime(n)), where B_m(x) denotes the Bernoulli polynomial of degree m.
-2, -1, 4, -6, 8, -6, -10, -5, 3, -16, 4, 6, 3, 6, -11, -29, 2, 7, 21, 4, -16, -23, -5, 43, 14, 3, -32, 26, 13, -23, 64, 52, -30, -74, -17, -33, 37, -82, -68, 55, -78, 96, 79, 22, -81, -26, -7, 70, -38, 9, 3, -118, 128, -123, -67, -69, -78, -138, 30, -60, -19, 88, -26, 110, 27, 63, -82, 138
Offset: 3
Keywords
Examples
a(3) = -2 since B_{prime(3)-2}(1/3) = B_3(1/3) = 1/27 == -2 (mod prime(3)=5).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 3..1300
- Guo-Shuai Mao and Zhi-Wei Sun, Two congruences involving harmonic numbers with applications, arXiv:1412.0523 [math.NT], 2014.
- Zhi-Wei Sun, Super congruences and Euler numbers, Sci. China Math. 54(2011), 2509-2535.
- Zhi-Wei Sun, Congruences involving g_n(x) = sum_{k=0}^n C(n,k)^2*C(2k,k)*x^k, arXiv:1407.0967 [math.NT], 2014.
Programs
-
Mathematica
rMod[m_,n_]:=Mod[Numerator[m]*PowerMod[Denominator[m],-1,n],n,-n/2] a[n_]:=rMod[BernoulliB[Prime[n]-2,1/3],Prime[n]] Table[a[n],{n,3,70}]
Comments