cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A277640 a(n) is the integer r with |r| < prime(n)/2 such that (T(prime(n)^2)-T(prime(n)))/prime(n)^4 == r (mod prime(n)), where T(k) denotes the central trinomial coefficient A002426(k).

Original entry on oeis.org

-2, 1, -3, -1, 7, -1, 6, 4, -15, -15, -13, 1, -23, 1, 8, -15, -22, 13, -33, 27, 25, 11, -17, 24, -32, -53, 31, 42, -19, 18, -35, 55, -5, 38, -29, 76, 34, 44, -71, -21, -13, 16, 46, 70, 92, 70, -39, 88, -84, -118, -120, 64, 107, 111, -56, 124, -13, -23
Offset: 3

Views

Author

Zhi-Wei Sun, Oct 25 2016

Keywords

Comments

Conjecture: (i) For any prime p > 3 and positive integer n, the number (T(p*n)-T(n))/(p*n)^2 is always a p-adic integer.
(ii) For any prime p > 3 and positive integer k, we have (T(p^k)-T(p^(k-1)))/p^(2k) == 1/6*(p^k/3)*B_{p-2}(1/3) (mod p), where (p^k/3) denotes the Legendre symbol and B_{p-2}(x) is the Bernoulli polynomial of degree p-2.
For any prime p > 3, the author has proved that (T(p*n)-T(n))/(p^2*n) is a p-adic integer for each positive integer n, and that T(p) == 1 + p^2/6*(p/3)*B_{p-2}(1/3) (mod p^3).

Examples

			a(3) = -2 since (T(prime(3)^2)-T(prime(3)))/prime(3)^4 = (T(25)-T(5))/5^4 = (82176836301-51)/5^4 = 131482938 is congruent to -2 modulo prime(3) = 5 with |-2| < 5/2.
		

Crossrefs

Programs

  • Mathematica
    T[n_]:=T[n]=Sum[Binomial[n,2k]Binomial[2k,k],{k,0,n/2}]
    rMod[m_,n_]:=Mod[Numerator[m]*PowerMod[Denominator[m],-1,n],n,-n/2]
    Do[Print[n," ",rMod[(T[Prime[n]^2]-T[Prime[n]])/Prime[n]^4,Prime[n]]],{n,3,60}]

A245204 The unique integer r with |r| < prime(n)/2 such that E_{prime(n)-3}(1/4) == r (mod prime(n)), where E_m(x) denotes the Euler polynomial of degree m.

Original entry on oeis.org

1, 2, 2, 4, 1, 1, 5, 1, -2, -6, 10, 14, 5, 7, 7, -28, -12, 13, 14, 26, -21, -31, -13, -10, -11, -7, -6, 5, 2, -21, 2, 33, -15, -24, 34, 71, -15, 24, 9, 37, 73, -18, -84, -65, 9, -90, -65, -47, 97, -64, -100, -8, 41, 81, -81, -71, -65, -70, 113, 10, -80, 119, 57, 78, 20, 124, 167, -71, -48
Offset: 2

Views

Author

Zhi-Wei Sun, Jul 13 2014

Keywords

Comments

Conjecture: a(n) = 0 infinitely often. In other words, there are infinitely many odd primes p such that E_{p-3}(1/4) == 0 (mod p) (equivalently, p divides A001586(p-3)).
This seems reasonable in view of the standard heuristic arguments. The first n with a(n) = 0 is 171 with prime(171) = 1019. The next such a number n is greater than 2600 and hence prime(n) > 23321.
Zhi-Wei Sun made many conjectures on congruences involving E_{p-3}(1/4), see the reference.

Examples

			a(3) = 2 since E_{prime(3)-3}(1/4) = E_2(1/4) = -3/16 == 2 (mod prime(3)=5).
		

Crossrefs

Programs

  • Mathematica
    rMod[m_,n_]:=Mod[Numerator[m]*PowerMod[Denominator[m],-1,n],n,-n/2]
    a[n_]:=rMod[EulerE[Prime[n]-3,1/4],Prime[n]]
    Table[a[n],{n,2,70}]

A277860 a(n) = Sum_{k=0..n-1} binomial(4k, 2k+1)*binomial(2k, k)*48^(n-1-k).

Original entry on oeis.org

0, 8, 720, 50400, 3220000, 196885920, 11756961216, 692835631488, 40536961717824, 2363784447147552, 137716866109432896, 8030173585594013568, 469162781054378536320, 27486632292027996114560, 1615617140290621588826880, 95302760085090826490672640
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 02 2016

Keywords

Comments

Conjecture: For any prime p > 3 and positive integer n, we have
(Sum_{k=0..p*n-1} binomial(4k, 2k+1)*binomial(2k, k)/48^k - (p/3)*Sum_{r=0..n-1} binomial(4r, 2r+1)*binomial(2r, r)/48^r)*48^n/((p*n)^2*binomial(4n, 2n)*binomial(2n, n)) == (5/3)*B_{p-2}(1/3) (mod p), where (p/3) is the Legendre symbol and B_{p-2}(x) is the Bernoulli polynomial of degree p-2.
This conjecture with n = 1 gives the congruence a(p) == (5/12)*p^2*B_{p-2}(1/3) (mod p^3) for any prime p > 3.

Examples

			a(1) = 0 since binomial(4*0, 2*0+1)*binomial(2*0, 0)*48^(1-1-0) = 0.
a(2) = 8 since Sum_{k=0..1} binomial(4k, 2k+1)*binomial(2k, k)*48^(2-1-k) = binomial(4, 2+1)*binomial(2, 1)*48^0 = 8.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[Binomial[4k,2k+1]Binomial[2k,k]48^(n-1-k),{k,0,n-1}]
    Table[a[n],{n,1,16}]

Formula

a(n) ~ 2^(6*n - 9/2) / (Pi*n). - Vaclav Kotesovec, Nov 06 2021

A245206 Odd primes p with E_{p-3}(1/4) == 0 (mod p), where E_n(x) denotes the Euler polynomial of degree n.

Original entry on oeis.org

1019
Offset: 1

Views

Author

Zhi-Wei Sun, Jul 13 2014

Keywords

Comments

The conjecture in A245204 asserts that the current sequence contains infinitely many primes.
Our computation shows that the second term should be greater than prime(2600) = 23321.

Examples

			a(1) = 1019 since 1019 is a prime with E_{1019-3}(1/4) == 88*1019 (mod 1019^2).
		

Crossrefs

Programs

  • Mathematica
    rMod[m_,n_]:=Mod[Numerator[m]*PowerMod[Denominator[m],-1,n],n,-n/2]
    n=0;Do[If[rMod[EulerE[Prime[k]-3,1/4],Prime[k]]==0,n=n+1;Print[n," ",Prime[k]]],{k,2,200}]

A245329 a(n) = sum_{k=0..n}C(n,k)^3*(-8)^k with C(n,k) = n!/(k!(n-k)!).

Original entry on oeis.org

1, -7, 1, 1001, -15359, 30233, 3126529, -61392247, 259448833, 11970181433, -287815672319, 1854020654633, 48800262650881, -1443188813338279, 12410505050039041, 198977188596692681, -7472188661349285887, 80331498114096555641
Offset: 0

Views

Author

Zhi-Wei Sun, Jul 18 2014

Keywords

Comments

Conjecture: (i) For any prime p > 3, we have sum_{k=0}^{p-1}(-1)^k*a(k) == (p/3) - p^2/12*B_{p-2}(1/3) (mod p^3) and sum_{k=0}^{p-1}(-1)^k*a(k)*H(k,2) == B_{p-2}(1/3) (mod p), where B_m(x) denotes the Bernoulli polynomial of degree m and H(k,2) stands for sum_{j=1..k} 1/j^2. Also, sum_{k=1}^{p-1}(-1)^k*a(k)/k == - 3*(2^p-2)/p (mod p) for any prime p.
(ii) For any positive integer n, the arithmetic mean (sum_{k=0}^{n-1}(6*k+5)(-1)^k*a(k))/n is an odd integer. Moreover, if p is a prime then sum_{k=0}^{p-1}(6*k+5)(-1)^k*a(k) == 3*p (mod p^2).

Examples

			a(2) = 1 since sum_{k=0}^2 C(2,k)^3*(-8)^k = 1 + 2^3*(-8) + (-8)^2 = 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[Binomial[n,k]^3*(-8)^k,{k,0,n}]
    Table[a[n],{n,0,17}]

Formula

Recurrence (obtained via the Zeilberger algorithm):
343*(3n+7)*(n+1)^2*a(n) + (3n+5)*(363n^2+1331n+1113)*a(n+1) + 7*(9n^3+57n^2+116n+74)*a(n+2) + (3n+4)*(n+3)^2*a(n+3) = 0.
Showing 1-5 of 5 results.