cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A218667 O.g.f.: Sum_{n>=0} 1/(1-n*x)^n * x^n/n! * exp(-x/(1-n*x)).

Original entry on oeis.org

1, 0, 1, 1, 4, 13, 46, 181, 778, 3585, 17566, 91171, 499324, 2873839, 17317743, 108933098, 713481122, 4855161425, 34257461754, 250177938679, 1887886966690, 14699340919293, 117933068390123, 973776266303732, 8265721830953558, 72052688932613079, 644393453082317301
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2012

Keywords

Comments

Compare g.f. to the curious identity:
1/(1+x^2) = Sum_{n>=0} (1-n*x)^n * x^n/n! * exp(-x*(1-n*x)).

Examples

			O.g.f.: A(x) = 1 + x^2 + x^3 + 4*x^4 + 13*x^5 + 46*x^6 + 181*x^7 +...
where
A(x) = exp(-x) + x/(1-x)*exp(-x/(1-x)) + x^2/(1-2*x)^2/2!*exp(-x/(1-2*x)) + x^3/(1-3*x)^3/3!*exp(-x/(1-3*x)) + x^4/(1-4*x)^4/4!*exp(-x/(1-4*x)) + x^5/(1-5*x)^5/5!*exp(-x/(1-5*x)) + x^6/(1-6*x)^6/6!*exp(-x/(1-6*x)) +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x,X=x+x*O(x^n));A=sum(k=0,n,1/(1-k*X)^k*x^k/k!*exp(-X/(1-k*X)));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* From a(n) = Sum_{k=1..n} Stirling2(n-k, k) * C(-1, k-1) */
    {Stirling2(n, k) = sum(j=0, k, (-1)^(k+j) * binomial(k, j) * j^n) / k!}
    {a(n)=if(n==0, 1, sum(k=1, n, Stirling2(n-k, k) * binomial(n-1, k-1)))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=1..n} Stirling2(n-k, k) * C(n-1, k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jul 30 2014
Antidiagonal sums of Triangle A245111.

A245110 G.f.: Sum_{n>=0} ( exp(-1/(1-n*x)) / (1-n*x)^n ) / n!.

Original entry on oeis.org

1, 1, 4, 23, 161, 1302, 11810, 117889, 1277890, 14894043, 185226966, 2442933979, 33998594943, 497207012018, 7613797641286, 121711037138949, 2025687745708717, 35020194893837462, 627586143525936866, 11636932722633705392, 222893347544826491780, 4403534468187986689781
Offset: 0

Views

Author

Paul D. Hanna, Jul 12 2014

Keywords

Comments

Compare the g.f. to: Sum_{n>=0} exp(-(1+n*x)) * (1+n*x)^n / n! = 1/(1-x).

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 23*x^3 + 161*x^4 + 1302*x^5 + 11810*x^6 +...
where
A(x) = exp(-1) + exp(-1/(1-x))/(1-x) + (exp(-1/(1-2*x))/(1-2*x)^2)/2!
+ (exp(-1/(1-3*x))/(1-3*x)^3)/3! + (exp(-1/(1-4*x))/(1-4*x)^4)/4!
+ (exp(-1/(1-5*x))/(1-5*x)^5)/5! + (exp(-1/(1-6*x))/(1-6*x)^6)/6!
+ (exp(-1/(1-7*x))/(1-7*x)^7)/7! + (exp(-1/(1-8*x))/(1-8*x)^8)/8! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • PARI
    /* From definition (requires setting suitable precision) */ \p100
    {a(n)=local(A=1+x, X=x+x*O(x^n)); A=suminf(k=0, exp(-1/(1-k*X))/(1-k*X)^k/k!); round(polcoeff(A, n))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* From a(n) = Sum_{k=1..n} Stirling2(n, k) * C(n+k-1, k-1) */
    {Stirling2(n, k) = sum(j=0, k, (-1)^(k+j) * binomial(k, j) * j^n) / k!}
    {a(n)=if(n==0,1,sum(k=1,n,Stirling2(n, k) * binomial(n+k-1, k-1)))}
    for(n=0, 30, print1(a(n),", "))
    
  • PARI
    /* As row sums of triangle A245111: */
    {A245111(n,k)=local(A=1+x*y); A=sum(k=0, n, 1/(1-k*x+x*O(x^n))^k*y^k/k!*exp(-y/(1-k*x+x*O(x^n))+y*O(y^n))); polcoeff(polcoeff(A, n,x),k,y)}
    {a(n) = sum(k=0,n, A245111(n,k))}
    /* Print Initial Rows of Triangle A245111: */
    {for(n=0, 10, for(k=0,n, print1(A245111(n,k),", "));print(""))}
    /* Row Sums yield A245110: */
    for(n=0, 30, print1(a(n),", "))

Formula

a(n) = Sum_{k=1..n} Stirling2(n, k) * C(n+k-1, k-1) for n>0 with a(0)=1.
Row sums of Triangle A245111.
Showing 1-2 of 2 results.