cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245121 Number of n-node rooted identity trees with thinning limbs and root outdegree (branching factor) 2.

Original entry on oeis.org

1, 1, 3, 4, 8, 12, 22, 36, 63, 107, 188, 327, 578, 1020, 1820, 3248, 5839, 10511, 19022, 34484, 62755, 114421, 209234, 383327, 703901, 1294822, 2386376, 4405083, 8144701, 15080416, 27961728, 51912054, 96496481, 179577543, 334558479, 623936240, 1164765120
Offset: 4

Views

Author

Alois P. Heinz, Jul 12 2014

Keywords

Comments

In a rooted tree with thinning limbs the outdegree of a parent node is larger than or equal to the outdegree of any of its child nodes.

Examples

			a(7) = 4:
:   o     o       o      o   :
:  / \   / \     / \    / \  :
: o   o o   o   o   o  o   o :
: |     |   |  / \    ( )  | :
: o     o   o o   o   o o  o :
: |     |     |       |      :
: o     o     o       o      :
: |     |     |              :
: o     o     o              :
: |                          :
: o                          :
		

Crossrefs

Column k=2 of A245120.

Programs

  • Maple
    b:= proc(n, i, h, v) option remember; `if`(n=0, `if`(v=0, 1, 0),
          `if`(i<1 or v<1 or n b(n-1$2, 2$2):
    seq(a(n), n=4..45);
  • Mathematica
    b[n_, i_, h_, v_] := b[n, i, h, v] = If[n == 0, If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0, Sum[Binomial[A[i, Min[i - 1, h]], j] b[n - i*j, i - 1, h, v - j], {j, 0, Min[n/i, v]}]]];
    A[n_, k_] := A[n, k] = If[n<2, n, Sum[b[n-1, n-1, j, j], {j, 1, Min[k, n-1] } ] ];
    a[n_] := b[n-1, n-1, 2, 2];
    a /@ Range[4, 45] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 1.938950593419038561279875... and c = 0.929315638487153276953929... . - Vaclav Kotesovec, Jul 13 2014