A245136 Number of length 6 0..n arrays least squares fitting to a zero slope straight line, with a single point taken as having zero slope.
8, 43, 172, 505, 1248, 2687, 5220, 9385, 15868, 25539, 39428, 58805, 85144, 120163, 165900, 224593, 298832, 391539, 505928, 645645, 814656, 1017335, 1258484, 1543341, 1877624, 2267451, 2719516, 3240965, 3839476, 4523383, 5301420, 6183009
Offset: 1
Keywords
Examples
Some solutions for n=10 ..7....9....8....6....7....7....6....3....3....0....0....3....4....2....2....6 .10....0....3....2....9....9...10....0....6....9....6....0....7....4....7....4 ..2....8....2....9....7...10....3....4....8....1....9....6....0....1...10....9 ..8....3....3...10....2....4....0....0....6....8....0....1....5....0....4....0 ..3...10....1....0....9....6....6....3...10....5....9....5....2....1....4....2 .10....4....9....7....8...10....9....2....1....1....0....1....6....4....5....9
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 6 of A245134.
Formula
Empirical: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +4*a(n-5) -5*a(n-6) +4*a(n-7) -5*a(n-8) +8*a(n-9) -5*a(n-10) +4*a(n-11) -5*a(n-12) +4*a(n-13) -4*a(n-14) +2*a(n-15) -a(n-16) +2*a(n-17) -a(n-18).
Empirical g.f.: -x*(-8 -27*x -94*x^2 -188*x^3 -356*x^4 -492*x^5 -640*x^6 -651*x^7 -644*x^8 -492*x^9 -356*x^10 -187*x^11 -96*x^12 -24*x^13 -8*x^14 -2*x^16 +x^17) / ( (1+x+x^2)^2*(x^4+x^3+x^2+x+1)^2*(x-1)^6 ). - R. J. Mathar, Jul 12 2014