cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245151 Number T(n,k) of n-node unlabeled rooted trees with thickening limbs and root outdegree (branching factor) k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 1, 0, 1, 0, 5, 1, 0, 0, 1, 0, 7, 3, 1, 0, 0, 1, 0, 12, 3, 1, 0, 0, 0, 1, 0, 17, 8, 1, 1, 0, 0, 0, 1, 0, 28, 9, 3, 1, 0, 0, 0, 0, 1, 0, 42, 21, 3, 1, 1, 0, 0, 0, 0, 1, 0, 69, 28, 5, 1, 1, 0, 0, 0, 0, 0, 1, 0, 105, 56, 9, 3, 1, 1, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Alois P. Heinz, Jul 12 2014

Keywords

Comments

In a rooted tree with thickening limbs the outdegree of a parent node is smaller than or equal to the outdegree of any of its non-leaf child nodes.
T(n+1,1) = Sum_{k=0..n-1} T(n,k) for n>=1.
T(n+1,n) = T(2n+1,n) = 1 for n>=0.
T(n,1+floor((n-1)/2)) = 0 for n>3.

Examples

			The A245152(5) = 5 5-node rooted trees with thickening limbs sorted by root outdegree are:
: o   o     o   :     o   :    o    :
: |   |     |   :    / \  :  /( )\  :
: o   o     o   :   o   o : o o o o :
: |   |    /|\  :  / \    :         :
: o   o   o o o : o   o   :         :
: |  / \        :         :         :
: o o   o       :         :         :
: |             :         :         :
: o             :         :         :
:               :         :         :
: ------1------ : ---2--- : ---4--- :
Thus row 5 = [0, 3, 1, 0, 1].
Triangle T(n,k) begins:
1;
0,   1;
0,   1,  1;
0,   2,  0,  1;
0,   3,  1,  0, 1;
0,   5,  1,  0, 0, 1;
0,   7,  3,  1, 0, 0, 1;
0,  12,  3,  1, 0, 0, 0, 1;
0,  17,  8,  1, 1, 0, 0, 0, 1;
0,  28,  9,  3, 1, 0, 0, 0, 0, 1;
0,  42, 21,  3, 1, 1, 0, 0, 0, 0, 1;
0,  69, 28,  5, 1, 1, 0, 0, 0, 0, 0, 1;
0, 105, 56,  9, 3, 1, 1, 0, 0, 0, 0, 0, 1;
0, 176, 81, 12, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1;
		

Crossrefs

Columns k=0-10 give: A000007(n-1), A245152(n-1), A245142, A245143, A245144, A245145, A245146, A245147, A245148, A245149, A245150.
Row sums give A245152.
Cf. A244657 (thinning limbs).

Programs

  • Maple
    b:= proc(n, i, h, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n b(n-1$2, k$2):
    seq(seq(T(n, k), k=0..n-1), n=1..20);
  • Mathematica
    b[n_, i_, h_, v_] := b[n, i, h, v] = If[n == 0, If[v == 0, 1, 0], If[i<1 || v<1 || nJean-François Alcover, Jan 27 2015, after Alois P. Heinz *)