A245173 Triangle read by rows: coefficients of the polynomials A_{3,4}(n,k).
1, 0, 1, 0, 1, 6, 6, 1, 0, 1, 22, 113, 190, 113, 22, 1, 0, 1, 53, 710, 3548, 7700, 7700, 3548, 710, 53, 1, 0, 1, 105, 2856, 30422, 151389, 385029, 523200, 385029, 151389, 30422, 2856, 105, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 6, 6, 1; 0, 1, 22, 113, 190, 113, 22, 1; 0, 1, 53, 710, 3548, 7700, 7700, 3548, 710, 53, 1; 0, 1, 105, 2856, 30422, 151389, 385029, 523200, 385029, 151389, 30422, 2856, 105, 1; ...
Links
- Per W. Alexandersson, Table of n, a(n) for n = 0..1365
- J. Agapito, On symmetric polynomials with only real zeros and nonnegative gamma-vectors, Linear Algebra and its Applications, Volume 451, 15 June 2014, Pages 260-289.
- Greta Panova, Iterated derivative and rectangular standard Young tableaux, version: 2019-09-05.
Programs
-
Mathematica
GG[a_, b_] := z (Product[(k)!/(a + k)!, {k, 0, b - 1}]) z^(1 - a) (1 - z)^(a b + 1) Nest[Simplify[z^(a - 1) D[#, {z, a}]] &, 1/(1 - z), b]; Table[CoefficientList[GG[a, 4] // Together, z], {a, 1, 8}] (* Per W. Alexandersson, Sep 05 2019 *)
Comments