A245188 Trajectory of 1 under repeated applications of the morphism 0->12, 1->13, 2->20, 3->21.
1, 3, 2, 1, 2, 0, 1, 3, 2, 0, 1, 2, 1, 3, 2, 1, 2, 0, 1, 2, 1, 3, 2, 0, 1, 3, 2, 1, 2, 0, 1, 3, 2, 0, 1, 2, 1, 3, 2, 0, 1, 3, 2, 1, 2, 0, 1, 2, 1, 3, 2, 1, 2, 0, 1, 3, 2, 0, 1, 2, 1, 3, 2, 1, 2, 0, 1, 2, 1, 3, 2, 0, 1, 3, 2, 1, 2, 0, 1, 2, 1, 3, 2, 1, 2, 0, 1, 3, 2, 0, 1, 2, 1, 3, 2, 0, 1, 3, 2, 1, 2, 0, 1, 3, 2, 0, 1, 2, 1, 3, 2, 1, 2, 0, 1
Offset: 0
Keywords
Links
- A. Parreau, M. Rigo, E. Rowland, and E. Vandomme, A new approach to the 2-regularity of the l-abelian complexity of 2-automatic sequences, arXiv preprint arXiv:1405.3532 [cs.FL], 2014. See Example 17.
- Index entries for sequences that are fixed points of mappings
Programs
-
Maple
mor := proc(L) local Lout,w ; if nops(L) = 0 then [1,2] ; else Lout := [] ; for w in L do if w = 0 then Lout := [op(Lout),1,2] ; elif w =1 then Lout := [op(Lout),1,3] ; elif w =2 then Lout := [op(Lout),2,0] ; else Lout := [op(Lout),2,1] ; end if; end do: Lout ; end if; end proc: L := [1] ; for r from 0 to 10 do Lold := L ; L := mor(Lold) ; for n from 1 to nops(Lold) do if op(n,L) = op(n,Lold) then printf("%d,",op(n,L)) ; else break; end if; end do: print() ; end do: # R. J. Mathar, Oct 25 2014
-
Mathematica
(* This gives the first 128 terms. *) SubstitutionSystem[{0 -> {1, 2}, 1 -> {1, 3}, 2 -> {2, 0}, 3 -> {2, 1}}, {1}, {{7}}] (* Eric Rowland, Oct 02 2016 *)
Comments