A245191 Successive states of one-sided one-dimensional cellular automaton using Rule 90, starting with a single ON cell, converted to decimal.
1, 2, 5, 8, 20, 34, 85, 128, 320, 544, 1360, 2056, 5140, 8738, 21845, 32768, 81920, 139264, 348160, 526336, 1315840, 2236928, 5592320, 8388736, 20971840, 35652128, 89130320, 134744072, 336860180, 572662306, 1431655765, 2147483648, 5368709120, 9126805504
Offset: 0
Keywords
Examples
Successive states are: 1 01 101 0001 00101 010001 1010101 00000001 000000101 0000010001 ... which when converted from binary to decimal give the sequence. This is the right-hand portion of the triangle in A038183.
Links
- Lars Blomberg, Table of n, a(n) for n = 0..100
Programs
-
C
#include
int main() { int u = 1, i = 1, n = 20; while (i++ <= n) { printf("%d, ", u); u = (u >> 1) ^ (u << 1); } } /* Luc Rousseau, Jun 05 2018 */ -
Mathematica
a[ n_] := Sum[ Mod[Binomial[2 n + 2, n + i + 2], 2] 2^i, {i, Mod[n, 2], n}]; (* Michael Somos, Jun 30 2018 *)
Formula
a(n) = Sum_{i>=0, i==n mod 2} (binomial(2n+2,n+2+i) mod 2)*2^i.
Write n = 2^k-1+j (k>=0, 0<=j<2^k). Then a(n) = 2^(k-j+1)*A038183(j).
Extensions
Corrected a(11) and more terms from Lars Blomberg, Aug 08 2015
Comments