A245206 Odd primes p with E_{p-3}(1/4) == 0 (mod p), where E_n(x) denotes the Euler polynomial of degree n.
1019
Offset: 1
Examples
a(1) = 1019 since 1019 is a prime with E_{1019-3}(1/4) == 88*1019 (mod 1019^2).
Links
- Zhi-Wei Sun, Super congruences and Euler numbers, Sci. China Math., Vol. 54, No. 12 (2011), 2509-2535; arXiv preprint, arXiv:1001.4453 [math.NT], 2010-2011.
- Index entries for one-term sequences.
Programs
-
Mathematica
rMod[m_,n_]:=Mod[Numerator[m]*PowerMod[Denominator[m],-1,n],n,-n/2] n=0;Do[If[rMod[EulerE[Prime[k]-3,1/4],Prime[k]]==0,n=n+1;Print[n," ",Prime[k]]],{k,2,200}]
Comments