cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A245242 a(n) = Sum_{k=0..n} binomial(n^2 - k^2, n*k - k^2).

Original entry on oeis.org

1, 2, 5, 40, 987, 73026, 15656191, 9146092572, 15579632823935, 71399036100619112, 916371430754269894286, 33098484899485154272997507, 3182514246669584511131232330210, 875352526298195795986890973534420721, 650999500319874632196352991280266092913655
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2014

Keywords

Examples

			We can illustrate the terms as the row sums of triangle A245243;
triangle A245243(n,k) = C(n^2 - k^2, n*k - k^2) begins:
1;
1, 1;
1, 3, 1;
1, 28, 10, 1;
1, 455, 495, 35, 1;
1, 10626, 54264, 8008, 126, 1;
1, 324632, 10518300, 4686825, 125970, 462, 1;
1, 12271512, 3190187286, 5586853480, 354817320, 1961256, 1716, 1; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n^2-k^2,n*k-k^2],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 15 2014 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n^2 - k^2, n*k - k^2))}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n^2,n*k)*binomial(n*k,k^2)/binomial(n^2,k^2))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} C(n^2, n*k) * C(n*k, k^2) / C(n^2, k^2).
a(n) = Sum_{k=0..n} ((n+k)*(n-k))! / ( (n*(n-k))! * (k*(n-k))! ).
a(n) = Sum_{k=0..n} (n^2 - k^2)! / ( (n^2 - n*k)! * (n*k - k^2)! ).
Limit n->infinity a(n)^(1/n^2) = r^(-(1-r)^2/(2*r)) = 1.65459846190854391888257390278..., where r = 0.37667447497728449846981481128313080857... (see A245259) is the root of the equation r^(2*r-1) = (r+1)^(2*r). - Vaclav Kotesovec, Jul 15 2014

A245245 a(n) = C(3*n^2, n^2).

Original entry on oeis.org

1, 3, 495, 4686825, 2254848913647, 52588547141148893628, 58152371703925106867047535565, 3012179439602547459232394950891834843500, 7255167425905233148164780983569428433097979870294255, 808718755397067598640202627155266231883064669446721506930287016061
Offset: 0

Views

Author

Paul D. Hanna, Jul 15 2014

Keywords

Comments

a(n) = A005809(n^2).

Crossrefs

Programs

  • Mathematica
    Table[Binomial[3*n^2, n^2],{n,0,20}] (* Vaclav Kotesovec, Jul 15 2014 *)
  • PARI
    {a(n)=binomial(3*n^2, n^2)}
    for(n=0,15,print1(a(n),", "))

Formula

Logarithmic derivative of A213409 (ignoring initial term a(0) of this sequence).
a(n) ~ 3^(3*n^2+1/2) / (sqrt(Pi) * n * 2^(2*n^2+1)). - Vaclav Kotesovec, Jul 15 2014
Showing 1-2 of 2 results.