A161630 E.g.f. satisfies: A(x) = exp( x/(1 - x*A(x)) ).
1, 1, 3, 19, 181, 2321, 37501, 731935, 16758393, 440525377, 13077834841, 432796650551, 15799794395749, 630773263606513, 27339525297079269, 1278550150117141231, 64171287394646697841, 3440711053857464325377
Offset: 0
Keywords
Examples
E.g.f: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 181*x^4/4! + 2321*x^5/5! +... log(A(x))/x = 1 + x*A(x) + x^2*A(x)^2 + x^3*A(x)^3 + x^4*A(x)^4 +...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..373
- Vaclav Kotesovec, Asymptotic of sequences A161630, A212722, A212917 and A245265
Programs
-
Mathematica
Table[Sum[n! * (n-k+1)^(k-1)/k! * Binomial[n-1,n-k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jan 10 2014 *)
-
PARI
{a(n,m=1)=if(n==0,1,sum(k=0,n,n!/k!*m*(n-k+m)^(k-1)*binomial(n-1,n-k)))}
-
PARI
{a(n,m=1)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp(x/(1-x*A)));n!*polcoeff(A^m,n)}
Formula
a(n) = Sum_{k=0..n} n! * (n-k+1)^(k-1)/k! * C(n-1,n-k).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
a(n,m) = Sum_{k=0..n} n! * m*(n-k+m)^(k-1)/k! * C(n-1,n-k).
E.g.f. satisfies: A(x) = exp(x) * A(x)^(x*A(x)). - Paul D. Hanna, Aug 02 2013
a(n) ~ n^(n-1) * (1+2*c)^(n+1/2) / (sqrt(1+c) * 2^(2*n+2) * exp(n) * c^(2*n+3/2)), where c = LambertW(1/2) = 0.351733711249195826... (see A202356). - Vaclav Kotesovec, Jan 10 2014
Comments