cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245271 a(n) = floor(sqrt(F(n+2)^2 + F(n)^2)), where F(n) = A000045(n).

Original entry on oeis.org

1, 2, 3, 5, 8, 13, 22, 36, 58, 95, 154, 249, 403, 652, 1056, 1709, 2766, 4475, 7241, 11717, 18959, 30676, 49635, 80311, 129947, 210258, 340205, 550464, 890670, 1441135, 2331806, 3772941, 6104748, 9877690, 15982438, 25860128, 41842566, 67702694, 109545261, 177247955
Offset: 0

Views

Author

Kival Ngaokrajang, Jul 15 2014

Keywords

Comments

a(n) is the length of the short side (rounded down) of the parallelogram appearing in the dissection fallacy using the square F(n+3) X F(n+3) (see the links and references). Let the actual length of the short side be L(n) and the one of the long side LL(n), then L(n) = LL(n-1). See the Ngaokrajang link for an illustration. Also floor(LL(n)*L(n)) = A014742(n), n >= 1 (proof by Wolfdieter Lang given there).
Note that F(n+2)^2 + F(n)^2 = 3*F(n+1)^2 - 2*(-1)^n = A069921(n). It appears that for n > 1, a(n) = floor(sqrt(3)*F(n+1)). - Robert Israel, Jul 16 2014

References

  • T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001, ch. 6, pp. 100-108.

Crossrefs

Programs

  • Maple
    A245271 := n -> floor(sqrt(3*combinat:-fibonacci(n+1)^2 - 2*(-1)^n)):
    seq(A245271(n), n=0..100); # Robert Israel, Jul 16 2014
  • Mathematica
    Table[Floor[Sqrt[Fibonacci[n + 2]^2 + Fibonacci[n]^2]], {n, 0, 50}] (* Wesley Ivan Hurt, Jul 17 2014 *)
  • PARI
    a(n) = sqrtint(fibonacci(n+2)^2 + fibonacci(n)^2)
    for (n=0,50,print1(a(n),", "))

Formula

a(n) = floor(sqrt(F(n+2)^2 + F(n)^2)), n >= 0, with F(n) = A000045(n), and F(n+2)^2 + F(n)^2 = A069921(n).
a(n) = A000196(A069921(n)). - Jason Yuen, Nov 10 2024

Extensions

A069921 added to Crossrefs and to the Robert Israel comment by Wolfdieter Lang, Jul 17 2014