A245271 a(n) = floor(sqrt(F(n+2)^2 + F(n)^2)), where F(n) = A000045(n).
1, 2, 3, 5, 8, 13, 22, 36, 58, 95, 154, 249, 403, 652, 1056, 1709, 2766, 4475, 7241, 11717, 18959, 30676, 49635, 80311, 129947, 210258, 340205, 550464, 890670, 1441135, 2331806, 3772941, 6104748, 9877690, 15982438, 25860128, 41842566, 67702694, 109545261, 177247955
Offset: 0
References
- T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001, ch. 6, pp. 100-108.
Links
- Kival Ngaokrajang, Illustration of initial terms.
- Eric Weisstein's World of Mathematics, Dissection Fallacy.
- Wikipedia, Missing square puzzle.
Programs
-
Maple
A245271 := n -> floor(sqrt(3*combinat:-fibonacci(n+1)^2 - 2*(-1)^n)): seq(A245271(n), n=0..100); # Robert Israel, Jul 16 2014
-
Mathematica
Table[Floor[Sqrt[Fibonacci[n + 2]^2 + Fibonacci[n]^2]], {n, 0, 50}] (* Wesley Ivan Hurt, Jul 17 2014 *)
-
PARI
a(n) = sqrtint(fibonacci(n+2)^2 + fibonacci(n)^2) for (n=0,50,print1(a(n),", "))
Comments