A245284 For any composite number n with more than a single prime factor, take the polynomial defined by the product of the terms (x-pi)^ei, where pi are the prime factors of n with multiplicities ei. Integrate this polynomial from the minimum to the maximum value of pi. This sequence lists the numbers for which the integral is an integer.
55, 85, 91, 105, 115, 133, 140, 145, 187, 195, 204, 205, 217, 231, 235, 247, 253, 259, 265, 275, 285, 295, 301, 319, 351, 355, 357, 385, 391, 403, 415, 425, 427, 429, 445, 451, 465, 469, 476, 481, 483, 493, 505, 511, 517, 535, 553, 555, 559, 565, 575, 583, 589
Offset: 1
Examples
n=1001. Prime factors: 7, 11 and 13: min(pi)=7, max(pi)=13. Polynomial: (x-7)*(x-11)*(x-13)= x^3-31*x^2+311*x-1001. Integral: x^4/4-31/3*x^3+311/2*x^2-1001*x. The area from x=7 to x=13 is 36. n=1005. Prime factors: 3, 5 and 67: min(pi)=3, max(pi)=67. Polynomial: (x-3)*(x-5)*(x-67)= x^3-75*x^2+551*x-1005. Integral: x^4/4-25*x^3+551/2*x^2-1005*x. The area from x=3 to x=67 is -1310720. n=1470. Prime factors: 2, 3, 5 and 7^2: min(pi)=2, max(pi)=7. Polynomial: (x-2)*(x-3)*(x-5)*(x-7)^2= x^5-24*x^4+220*x^3-954*x^2+1939*x-1470. Integral: x^6/6-24/5*x^5+55*x^4-318*x^3+1939/2*x^2-1470*x. The area from x=3 to x=67 is 0.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1000
Programs
-
Maple
isA245284 := proc(n) local pfs,x1,x2,po,x ; if isprime(n) then false; else pfs := ifactors(n)[2] ; if nops(pfs) > 1 then x1 := A020639(n) ; x2 := A006530(n) ; po := mul((x-op(1,p))^op(2,p),p=pfs) ; int(po,x=x1..x2) ; type(%,'integer') ; else false; end if; end if; end proc: for n from 4 to 600 do if isA245284(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Sep 07 2014
Extensions
Definition and example corrected by R. J. Mathar, Sep 07 2014
Comments