cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245284 For any composite number n with more than a single prime factor, take the polynomial defined by the product of the terms (x-pi)^ei, where pi are the prime factors of n with multiplicities ei. Integrate this polynomial from the minimum to the maximum value of pi. This sequence lists the numbers for which the integral is an integer.

Original entry on oeis.org

55, 85, 91, 105, 115, 133, 140, 145, 187, 195, 204, 205, 217, 231, 235, 247, 253, 259, 265, 275, 285, 295, 301, 319, 351, 355, 357, 385, 391, 403, 415, 425, 427, 429, 445, 451, 465, 469, 476, 481, 483, 493, 505, 511, 517, 535, 553, 555, 559, 565, 575, 583, 589
Offset: 1

Views

Author

Paolo P. Lava, Aug 22 2014

Keywords

Comments

The union of A203612 U A203613 U A203614.

Examples

			n=1001. Prime factors: 7, 11 and 13: min(pi)=7, max(pi)=13. Polynomial: (x-7)*(x-11)*(x-13)= x^3-31*x^2+311*x-1001. Integral: x^4/4-31/3*x^3+311/2*x^2-1001*x. The area from x=7 to x=13 is 36.
n=1005. Prime factors: 3, 5 and 67: min(pi)=3, max(pi)=67. Polynomial: (x-3)*(x-5)*(x-67)= x^3-75*x^2+551*x-1005. Integral: x^4/4-25*x^3+551/2*x^2-1005*x. The area from x=3 to x=67 is -1310720.
n=1470. Prime factors: 2, 3, 5 and 7^2: min(pi)=2, max(pi)=7. Polynomial: (x-2)*(x-3)*(x-5)*(x-7)^2= x^5-24*x^4+220*x^3-954*x^2+1939*x-1470. Integral: x^6/6-24/5*x^5+55*x^4-318*x^3+1939/2*x^2-1470*x. The area from x=3 to x=67 is 0.
		

Crossrefs

Cf. A203612, A203613, A203614, A245435. Subsequence of A024619.

Programs

  • Maple
    isA245284 := proc(n)
        local pfs,x1,x2,po,x ;
        if isprime(n) then
            false;
        else
            pfs := ifactors(n)[2] ;
            if nops(pfs) > 1 then
                x1 := A020639(n) ;
                x2 := A006530(n) ;
                po := mul((x-op(1,p))^op(2,p),p=pfs) ;
                int(po,x=x1..x2) ;
                type(%,'integer') ;
            else
                false;
            end if;
        end if;
    end proc:
    for n from 4 to 600 do
        if isA245284(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Sep 07 2014

Extensions

Definition and example corrected by R. J. Mathar, Sep 07 2014