A245318 Numbers k that divide 2^k + 5.
1, 7, 133, 1517, 11761, 676333, 1484413, 3627557, 10289371, 1449045241, 2433687407, 12309023183, 29013950411, 11701492535299, 223598572318157, 362232879754103
Offset: 1
Examples
2^7 + 5 = 133 is divisible by 7. Thus 7 is a term of this sequence.
Links
- OEIS Wiki, 2^n mod n
Programs
-
Mathematica
Select[Range[10^5], Divisible[2^# + 5, #] &] (* Robert Price, Oct 12 2018 *)
-
PARI
for(n=1,10^9,if(Mod(2,n)^n==Mod(-5,n),print1(n,", ")))
Extensions
a(10)-a(13) from Lars Blomberg, Nov 05 2014
a(14)-a(16) from Max Alekseyev, Oct 09 2016
Comments